

Would nighttime deliveries be useful to reduce air pollution in cities?

Econometrical evidence from Paris

(Work in progress – please, do not quote)

Lucie Letrouit (Univ. Gustave Eiffel)

Conférence AFET

November 19, 2025

Context

- Road transport responsible for 65% of NOx pollution in Paris (Ville de Paris, 2023)
- Freight transport for 20% (Degraeuwe et al., 2019)
- Freight road transport is projected to grow by 100% by 2050

→ Long-term solution: electrifying the fleet:

- In 2024, only 2.2% of new trucks were electric in Europe
- EU regulation 2024/1610: as of 2040, average CO2 emissions of new trucks = - 90% as compared to 2019 → Not better for NOx

→ In the meantime: Low Emissions Zones and **off-peak deliveries** (trucks avoid road congestion)

In this research

2 distinct blocks:

1) Estimation of the impact of nighttime deliveries on NOx pollution

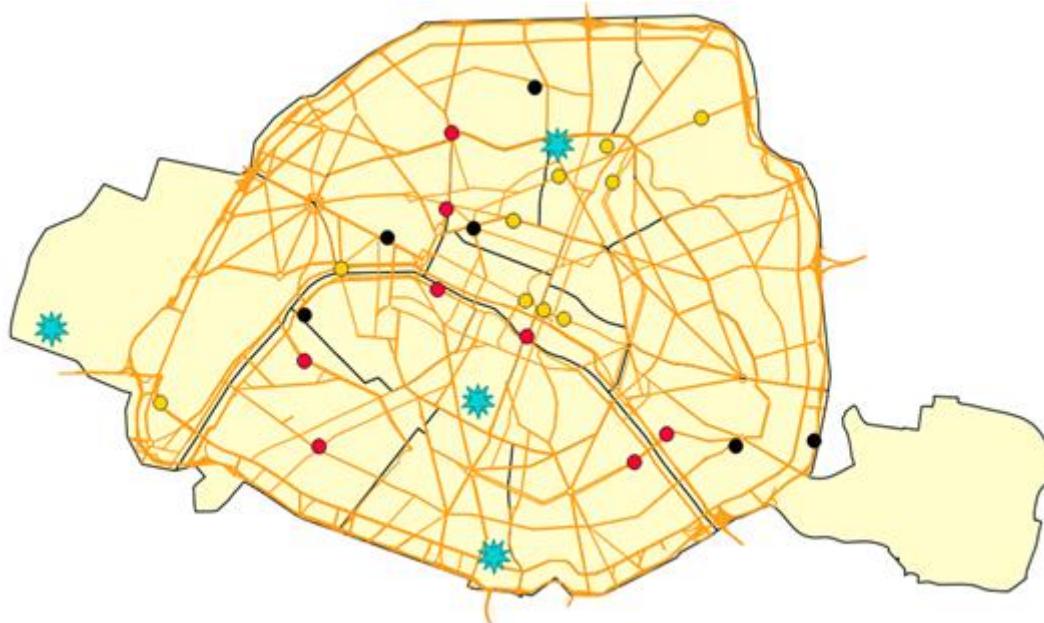
- **Econometric method:** to model both the impact of various vehicles' road occupation rate on **traffic speed** and on **NOx pollution**
- **Using the econometric estimates:** 1) contribution of each vehicle type to NOx pollution, 2) contribution of one truck (resp. LDV) to NOx pollution depending on the hour of the day, 3) impact of nighttime deliveries

2) Cost-Benefit Analysis of nighttime deliveries using the estimated impacts on traffic speed and NOx pollution (incl. health, noise, wages, time...)

Literature on off-peak deliveries' impacts on pollution

Study	Location	Methodology	Impact of trucks' off-hour driving on NOx
Holguin-Veras et al., 2018	New York, Bogota, Sao Paulo	On-board GPS equipment	-65% for that truck (22:00-6:00)
Kianoush et al., 2021	Region of Peel (Canada)	More aggregate trip speed and stop information	-11.3%
Beziat & Savagodo, 2021	Lyon (France)	Agent-based modelling	-3% (if 50% of off-peak deliveries)
Yannis et al., 2006	Athens (Greece)	Traffic assignment model	-9% (for CO) (7:00-10:30)
Sathaye et al., 2010	Los Angeles, Long Beach (US)	Air pollution dispersion model, annual daily traffic data	-19.6% (for PM2.5) (3:00-9:00 to 18:00-22:00)
Saleh et al., 2022	Greater Toronto and Hamilton Area (Canada)	Regional travel demand model with rebound effect	-0.05% (100% wholesale and retail 19:00-23:00, 100% accomod. & food 23:00-6:00)

Existing economic analyses of nighttime deliveries


Study	Location	Methodology	Methodology of economic analysis	Economic analysis results
Holguin-Veras et al., 2012	New York	On-board GPS equipment	CBA: Noise, congestion, operating costs, air pollution	Optimal level of incentive to food and retail sectors: \$10000-\$15000/year per receiving firm
Mommens et al., 2018	Belgium	Freight transport agent-based model	Cost comparison only: CO2, NOx, PM2.5, accidents, infrastructure, noise, congestion	Best scenario: all small and 1/3 of large supermarket
Ukkusuri et al., 2016	New York	Macro regional travel demand model, meso sub-simulation network	Monetized traffic benefits compared to monetary incentives given to receivers	Highest when 10% daytime freight vehicles shifted (the max studied)

Data sources

Hourly data for Paris *intra-muros* between Dec. 8, 2024 and Jul. 7, 2025:

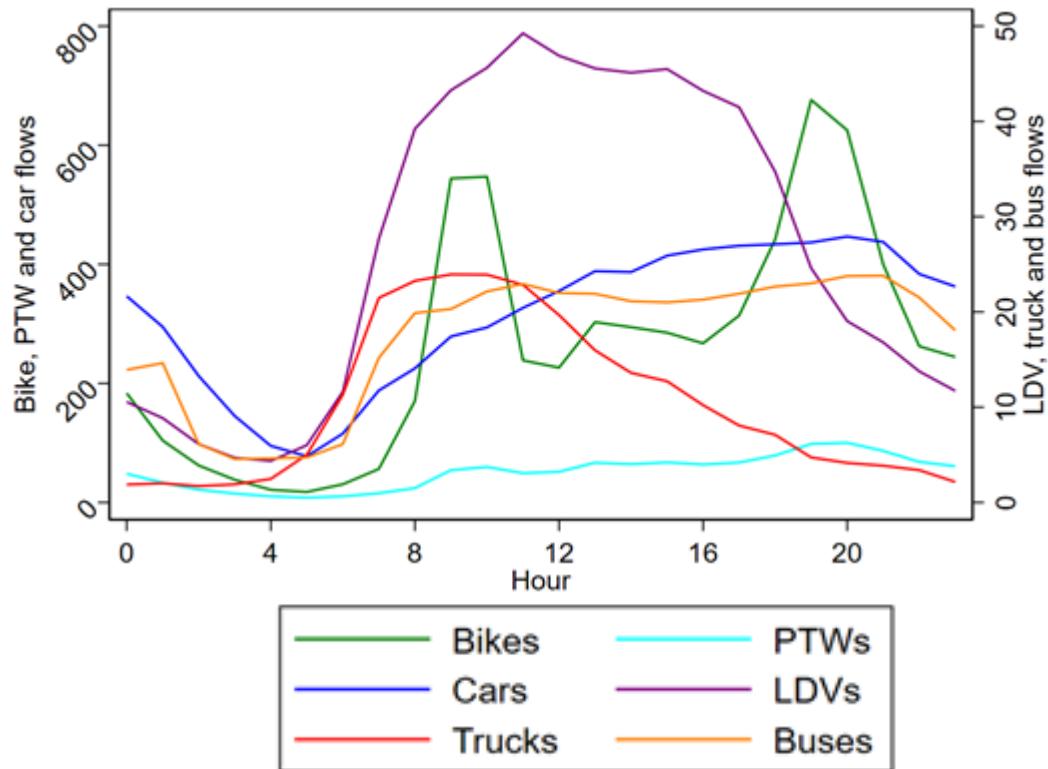
- **Multimodal traffic counters** for 6 vehicle types (8 counters for the speed analysis and 24 for the pollution analysis) from Paris' city open data
- **All-vehicles traffic counters** (4400 counters, 35% of roads in Paris)
- **Air pollution** (6 stations) from Airparif
- **Weather** (temperature, wind speed, humidity, rain, luminosity) (4 stations) from MeteoFrance
- **Boundary layer height** from ECMWF
- **Electricity consumption** in Paris Metropolis from ODRE

Map of the various measurement stations

- Air pollution monitoring stations
- Multimodal counters for the speed and pollution analyses
- Multimodal counters for the pollution analysis

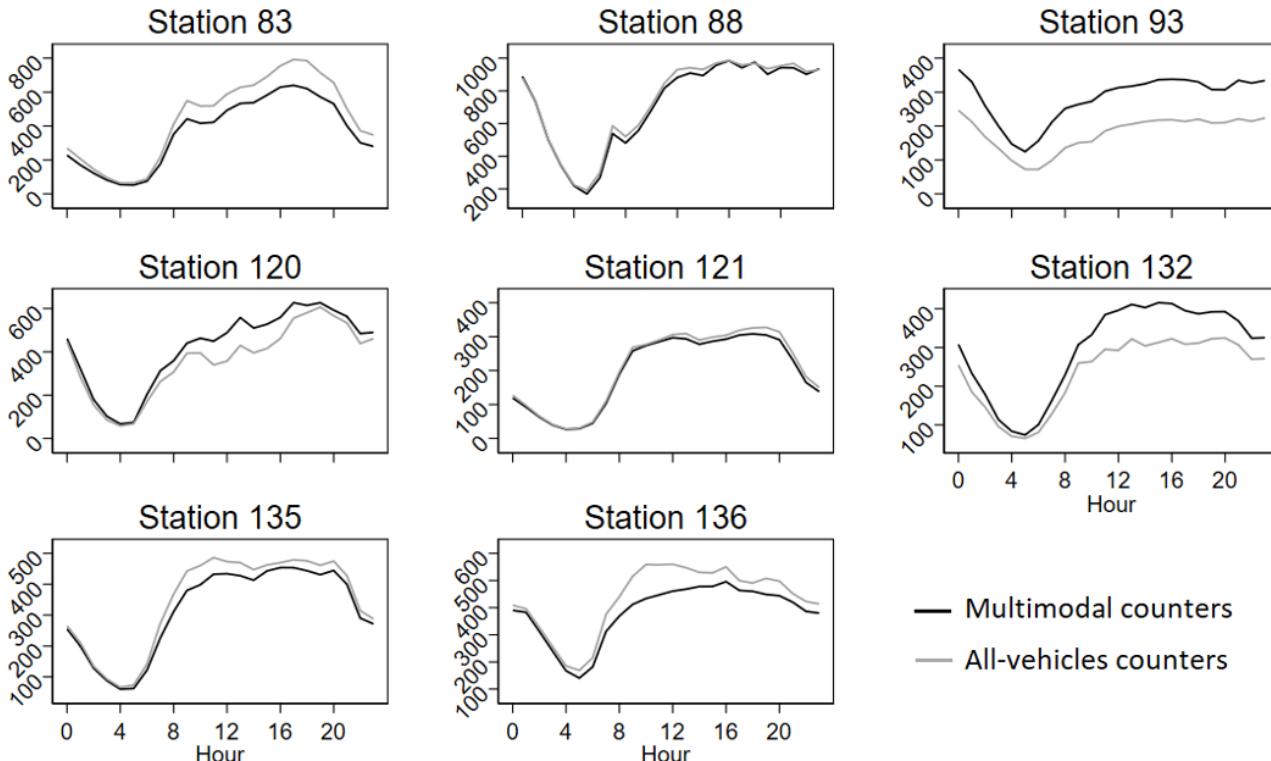
- Weather monitoring stations
- Non-multimodal counters' road
- Paris' administrative districts

Descriptive statistics - Speed analysis


	Mean	Stand. dev.	Min	Max
Traffic				
Total motorized traffic flow (nb./h)	311.68	205.47	0.00	3908.00
Motorized occupancy rate (%)	8.58	12.90	0.01	86.77
Bike flow	241.02	290.95	0.00	3307.00
PTW flow	47.38	44.05	0.00	344.00
Car flow	322.25	229.60	0.00	1440.00
LDV flow	23.42	26.50	0.00	211.00
Truck flow	8.38	10.95	0.00	153.00
Bus flow	16.76	18.50	0.00	113.00
Weather				
Rainfall height (mm/h)	0.06	0.40	0.00	13.76
Wind speed (m/s)	3.00	1.37	0.00	9.29
Temperature (°C)	12.22	7.48	-2.74	39.47
Relative humidity (%)	70.49	18.02	20.56	99.99
Luminosity (J/cm ²)	52.14	83.54	0.00	354.76
Observations	44293			

Descriptive statistics - Pollution analysis

	Mean	Stand. dev.	Min	Max
Traffic				
Total motorized traffic flow (nb./h)	679.74	272.01	59.42	4236.05
Motorized occupancy rate (%)	7.39	3.92	0.72	25.57
Bike flow	47.88	35.14	1.88	229.71
PTW flow	50.14	31.94	3.33	196.71
Car flow	292.68	100.12	49.92	460.08
LDV flow	22.43	15.99	1.71	89.17
Truck flow	8.92	9.05	0.17	38.38
Bus flow	14.25	5.83	1.38	36.17
Weather				
Rainfall height (mm/h)	0.06	0.40	0.00	12.13
Wind speed (m/s)	2.99	1.33	0.00	9.30
Temperature (°C)	11.64	7.59	-2.03	38.67
Relative humidity (%)	71.61	18.26	23.00	99.00
Luminosity (J/cm ²)	47.89	80.68	0.00	342.00
Other variables				
Boundary layer height (m)	540.47	463.82	13.27	2513.48
NO _x concentration (µg/m ³)	51.37	30.60	5.95	300.93
Electricity consumption (MW)	4238.56	1055.23	2248.25	6927.25
Observations	3119			


Descriptive statistics (3)

Hourly variations of traffic flows per vehicle type (average on all workdays)

Descriptive statistics (4)

Hourly variations of total motorized traffic flows according to the multimodal counters and to the all-vehicles counters

Econometric models

$$\begin{aligned}
 Speed_{h,c} = & \sum_{i \in \{car, LDV, truck, bus\}} \alpha_i Occ_{i,h,c} + \sum_{i \in \{car, LDV, truck, bus\}} \beta_i Occ_{i,h,c}^2 \\
 & + \sum_{i \in \{PTW, car, LDV, truck, bus\}} \gamma_i Occ_{i,h,c}^3 + W_{h,c} + F_d * F_H + F_m + F_c + \epsilon_{h,c}
 \end{aligned}$$

$Speed_{h,c}$: speed proxy at a hour h (4770 distinct hours in our dataset) for a specific multimodal counter $c = \frac{Flow_{h,c} * (vehlength + roadlength_c)}{Occrate_{h,c}}$

$Occ_{i,h,c}$: occupancy rate by vehicle type i at a specific hour and counter

$W_{h,c}$: weather variables

$F_d * F_H$: interaction between a day-of-week fixed effect and an hour-of-day fixed effect

F_m : month fixed effect, F_c : multimodal counter fixed effect, $\epsilon_{h,c}$: error term

Econometric models (2)

$$\begin{aligned}
 NOX_h = & \sum_{i \in \{PTW, car, LDV, truck, bus\}} \alpha_i Occ_{i,h} + \sum_{i \in \{PTW, car, LDV, bus\}} \beta_i Occ_{i,h}^2 \\
 & + \sum_{i \in \{PTW, car\}} \gamma_i Occ_{i,h}^3 + \sum_{i \in \{PTW\}} \delta_i Occ_{i,h}^4 + W_h + W'_{h-1} + W''_{h-2} + W''_{h-3} + W''_{h-4} \\
 & + B_h + C_h + C_{h-1} + \phi_1 NOX_{h-1} + \theta_1 \epsilon_{h-1} + \epsilon_h
 \end{aligned}$$

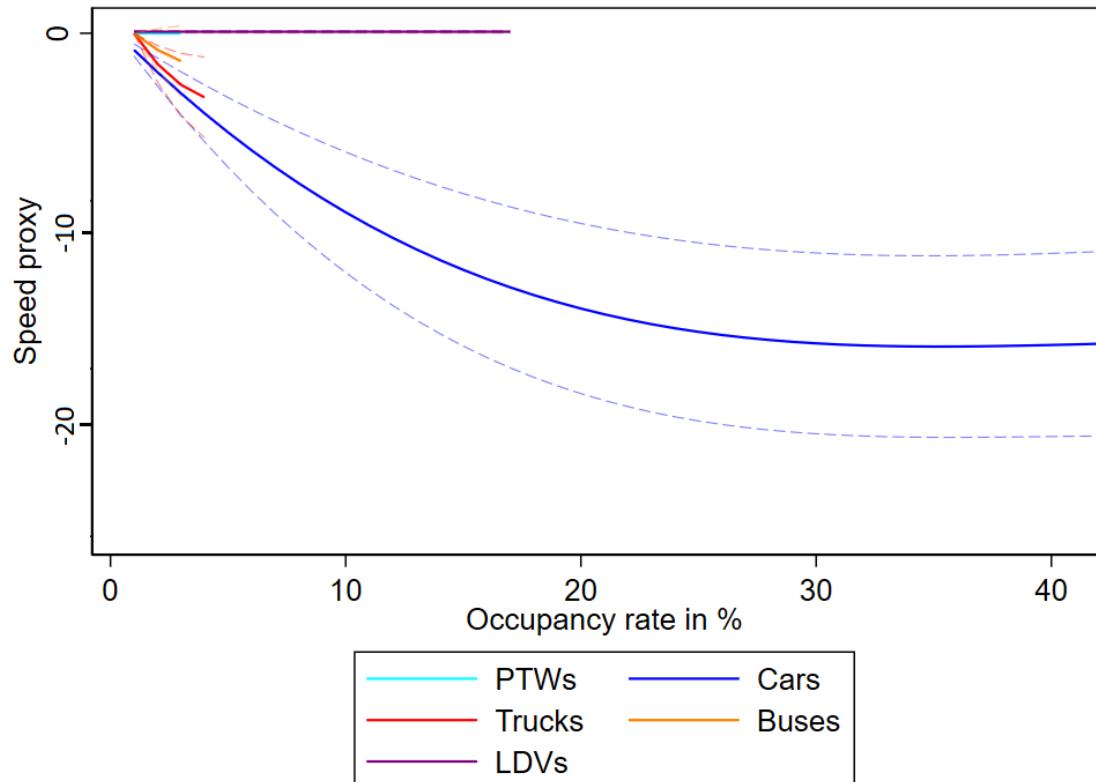
NOX_h : concentration of NOx at hour h (there are 3119 distinct hours in this dataset)

$Occ_{i,h}$: occupancy rate by vehicle type i at h

W_h : all weather variables (rainfall height, wind speed, temperature, relative humidity, luminosity) at h

W'_{h-1} : wind and luminosity at $h - 1$, W''_j : wind at hour j

B_h : boundary layer height at h , C_j : electricity consumption at hour j

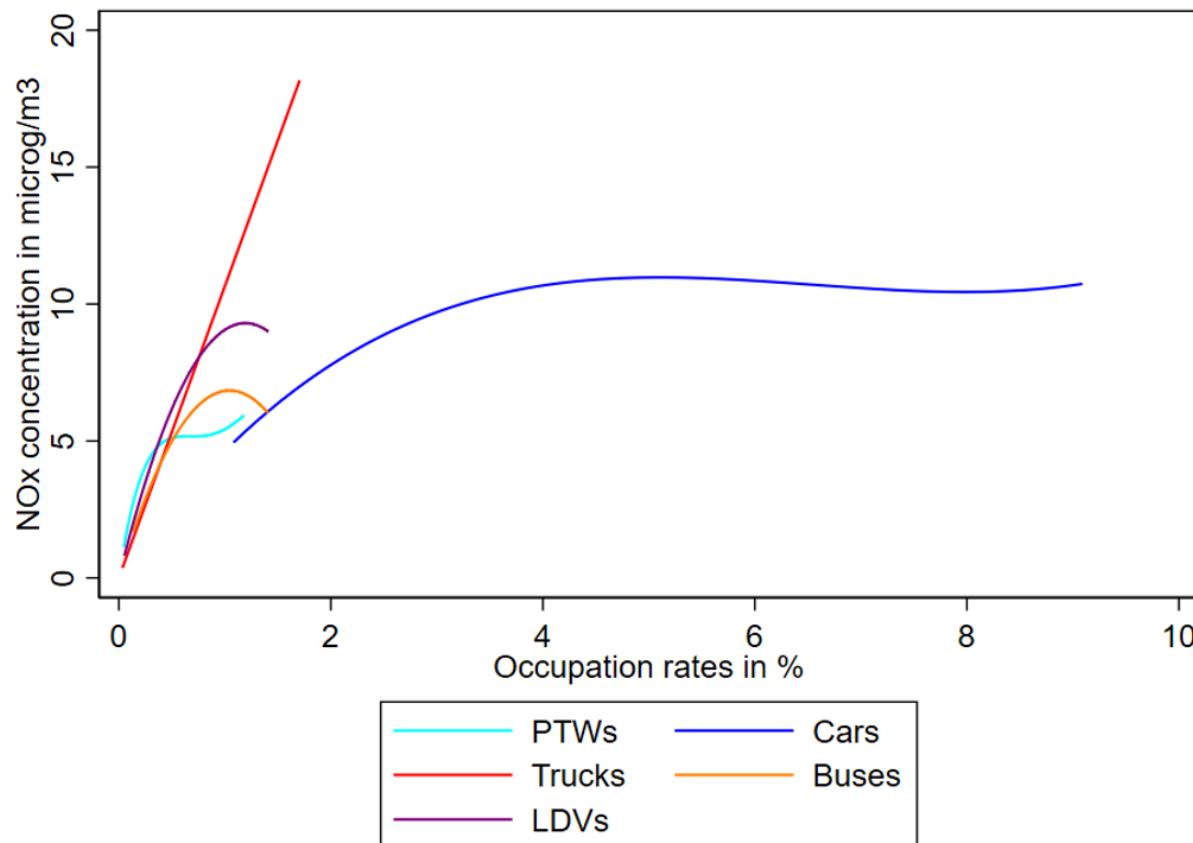

NOX_{h-1} : lagged NOx concentration (i.e. the autoregressive term)

ϵ_h : error term, ϵ_{h-1} : lagged error (i.e. the moving average term)

Econometric estimates for the speed proxy

		(1)	(2)	(3)	(4)	(5)
Occ. rate	- PTWs		-0.110	0.040		
	- Cars	-1.269***	-1.247***	-0.888***	-1.465***	-0.936***
	- Trucks	-2.271***	-2.146***	-1.365**	-1.578***	-2.356***
	- Buses	-1.229*	-1.181*	-0.656	-0.648**	-0.430
	- LDVs		-0.311	0.183		
(Occ. rate) ²	- PTWs		0.003	-0.005**		
	- Cars	0.033***	0.033***	0.011***	0.042***	0.020***
	- Trucks	0.379***	0.359***	0.121**	0.258***	0.390***
	- Buses	0.250*	0.249*	0.071*	0.138**	0.078
	- LDVs	0.029***	0.072	0.007	0.020*	0.035***
(Occ. rate) ³	- PTWs	-0.0001***	-0.0001		-0.0001***	-0.00009***
	- Cars	-0.0002***	-0.0002***		-0.0003***	-0.0001**
	- Trucks	-0.017***	-0.017***		-0.012***	-0.018***
	- Buses	-0.011*	-0.011*		-0.006**	-0.003
	- LDVs	-0.002***	-0.003***		-0.001***	-0.002***
Observations		41,553	41,553	41,553	41,553	41,553
Nb. of stations		10	10	10	10	10
Fixed effects:						
Day of week * Hour of day		X	X	X		
Weekend * Hour of day * Counter					X	
Month		X	X	X	X	
Counter		X	X	X	X	X

Econometric estimates for the speed proxy (2)



Econometric estimates for the NOx concentration

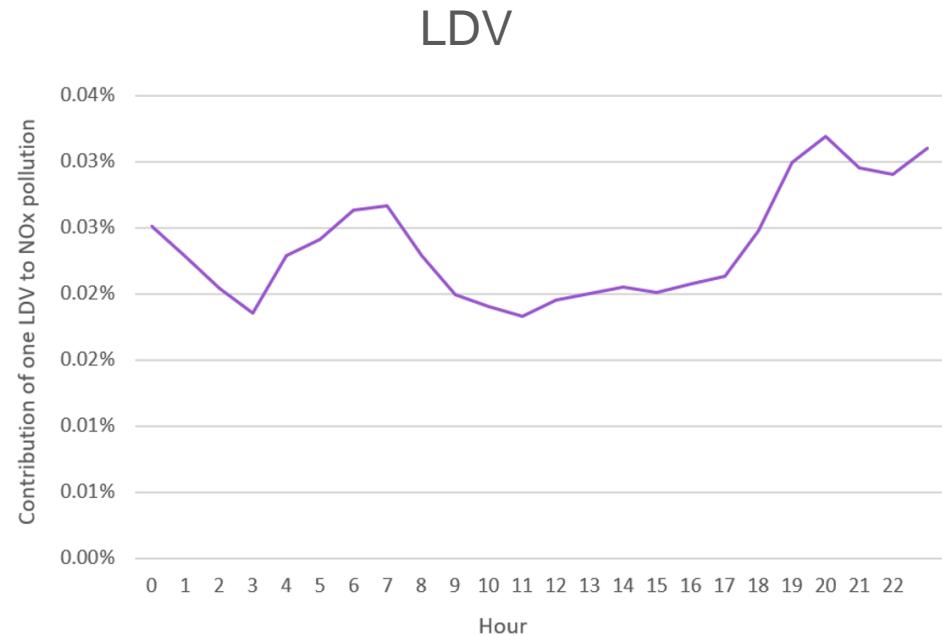
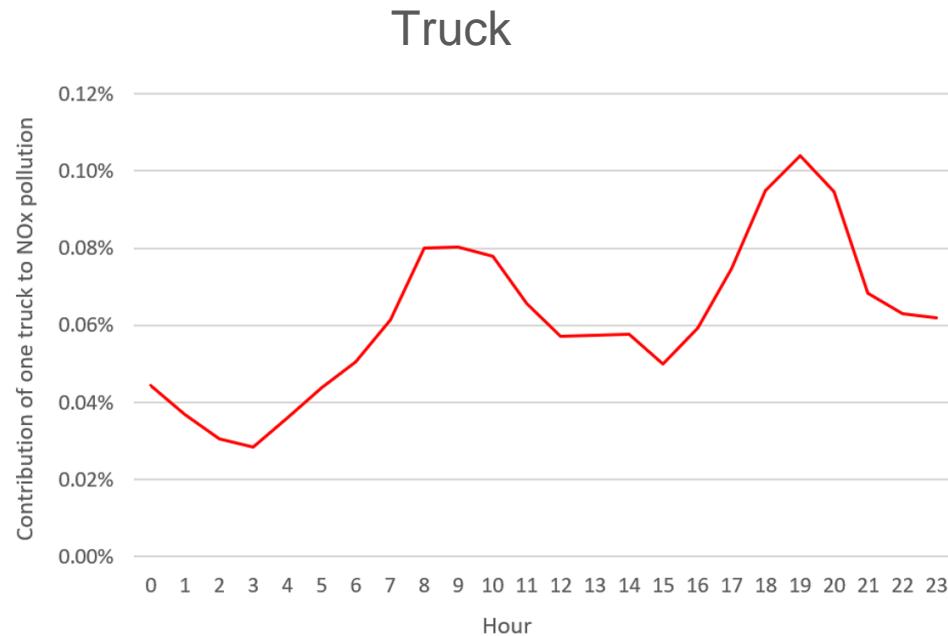
Baseline spec. :
 Autoreg. term = 0.92
 Moving average = 0.19

		(1)	(2)	(3)	(4)
Occ. rate	- PTWs	25.9444	24.4598	37.5123**	60.0585***
	- Cars	5.4635***	5.5676***	7.1377***	8.6473***
	- LDVs	15.6009***	16.3190***	9.5901**	6.6505*
	- Trucks	10.6510***	10.6607***	11.2985***	15.3579***
	- Buses	13.1013***	11.7865***	14.6387***	18.3033***
(Occ. rate) ²	- PTWs	-47.0189*	-43.6492	-61.0567**	-97.1400***
	- Cars	-0.8774***	-0.8744***	-1.0607***	-1.5775***
	- LDVs	-6.5404***	-6.6549***	-4.5021***	-3.7855**
	- Buses	-6.2706***	-5.8329***	-6.7636***	-9.4230***
(Occ. rate) ³	- PTWs	35.8074*	32.7183*	44.2143**	70.6107***
	- Cars	0.0447***	0.0437***	0.0494***	0.0816***
(Occ. rate) ⁴	- PTWs	-9.3070*	-8.4194*	-11.1622**	-17.9563***
Number of observations		2646	2646	2810	2810
BIC		18947	18962	20259	20494
ARIMA AR		1	2	1	1
ARIMA MA		1	5	1	1
Explanatory variables					
Meteo.		X	X	X	
Lagged var.		X	X		

Econometric estimates for the NOx concentration (2)

Applications

- **Contribution of each vehicle type to the NOx pollution**



In the presence of all vehicles: speed proxy = 10.48 ; mean pred. NOx = 51.55

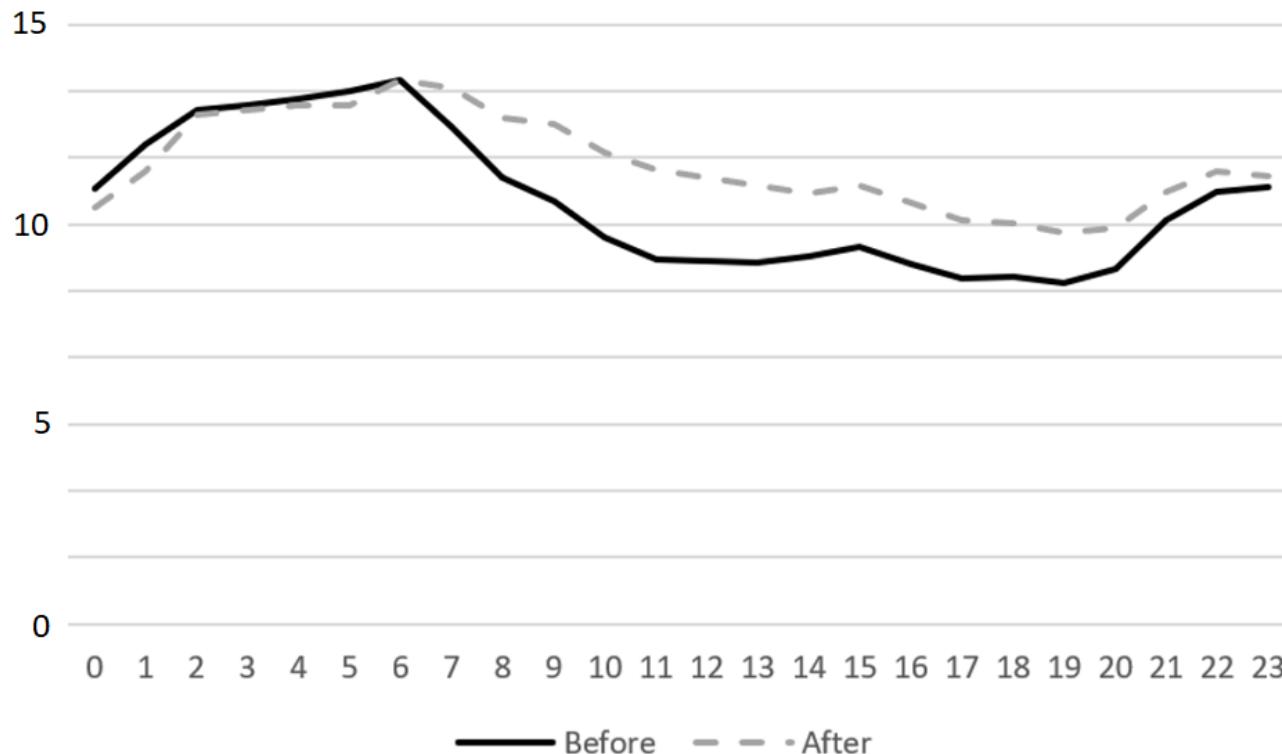
When suppressing each type of vehicle:

	Mean pred. speed proxy (km/h)	Mean pred. NOx (no speed)	Contrib. of veh. to NOx (no speed)	Mean pred. NOx	Contrib. of veh. to NOx
No PTWs	10.4	46.73	9.4%	46.72	9.4%
No cars	15.9	43.24	16.1%	38.54	25.3%
No LDVs	10.42	46.71	9.4%	46.76	9.3%
No trucks	11.5	46.36	10.1%	45.91	11.0%
No buses	11.1	46.83	9.2%	46.12	10.6%
Total of contrib.			54.2%		65.6%

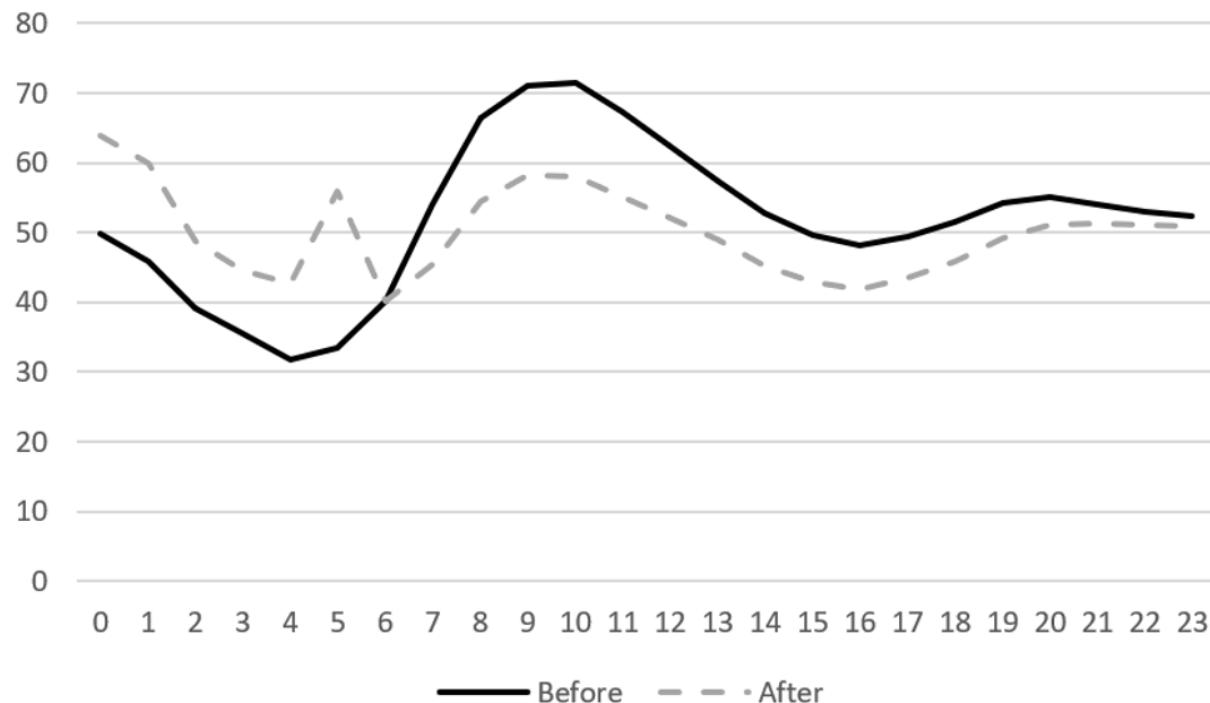
Applications (2)

Contribution of a truck and of a LDV to NOx pollution, depending on the hour at which it is driven

Applications (3)


Estimation of the impact of various schemes of nighttime deliveries according to the combination of the two models

Before: speed proxy = 10.48 ; mean pred. NOx = 51.55


	Mean pred. speed proxy after	Mean pred. NOx after (no speed)	Mean pred. NOx after	Reduction of NOx
8-20 to 0-6	11.4	50.330	49.965	4.4%
7-23 to 0-5	11.6	49.979	49.511	5.3%
7-23 to 0-5, 90% trucks, 20% LDVs	11.3	50.394	47.296	9.4%
Idem with full rebound effect	10.9	50.545	50.230	3.8%

→ CBA

Hourly profile of the speed proxy before and after the introduction of nighttime deliveries (90% trucks and 20% LDV from 7-23 to 0-5)

Hourly profile of the NOx concentration (in microg/m³) before and after the introduction of nighttime deliveries (90% trucks and 20% LDV from 7-23 to 0-5)

Cost-Benefit Analysis – Scenario 90% trucks, 20% LDVs

Benefits:

- transport time for drivers, riders and bus users: because less congestion during the day
- morbidity and mortality due to NO2: because less pollution (because less congestion for all vehicles)
- noise nuisances during the day: because fewer trucks and LDVs during the day
- fuel expenses: because trucks and LDVs drive faster
- CO2 externalities: because trucks and LDVs drive faster
- total hours worked by truck and LDV drivers: because trucks and LDVs drive faster

Other benefits (not included in the CBA):

- accidents: because fewer trucks and LDVs during the day (will be added soon)
- wear and tear on trucks and LDVs and road infrastructure: because less stop-and-go
- reliability of deliveries: because less congestion by night
- need for heavy investments in road infrastructure: because fewer trucks and LDVs during the day

Cost-Benefit Analysis – Scenario 90% trucks, 20% LDVs

Costs:

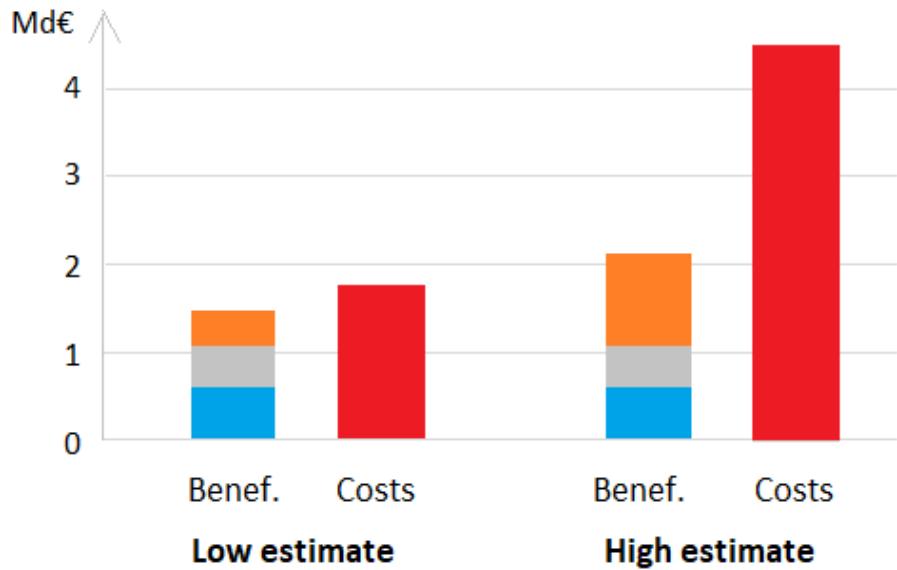
- noise nuisances during the night: because additional trucks and LDVs during the night
- hourly wage of drivers and employees at the delivery point: because night shift wage rate > day shift wage rate

Other costs (not included in the CBA):

- health for trucks and LDV drivers: due to night shifts (will be added soon)
- Investments in less noisy vehicles: to reduce the noise nuisances
- Organisational costs: to reorganise the logistics chain so as to allow for nighttime deliveries

Cost-Benefit Analysis – Scenario 90% trucks, 20% LDVs

Key hypotheses:


- **Low estimate** = only the jobs of truck drivers, long-haul drivers, delivery riders and couriers working **in Paris** are shifted to the night (90% of them on 50% of their working hours)
- **High estimate** = adding the same jobs in **Paris' inner suburbs** (on 25% of their working hours) and **warehouse workers** (on 25% of their working hours)
- **Health impact of NOx pollution** estimated using EQIS methodology (impact on asthma, pneumopathies, death)
- **Transport time for drivers, riders and bus users** (survey by Institut Paris Region)
- **Hourly wage of drivers:** 12€/h during the day, 14€/h by night

Cost-Benefit Analysis – Scenario 90% trucks, 20% LDVs

Estimated impact of nighttime deliveries in Paris during one year:

Benefits (M€)	Low estim.	High estim.	Costs (M€)	Low estim.	High estim.
↘ transport time for drivers, riders and bus users	600	600	↗ noise nuisances during the night	1746	4506
↘ morbidity and mortality due to NO ₂	463	463	↗ hourly wage of drivers	7	18
↘ noise nuisances during the day	406	1047			
↘ fuel expenses	3	9			
↘ CO ₂ externalities	1	4			
↘ total hours worked by truck and LDV drivers	1	3			

Cost-Benefit Analysis (2)

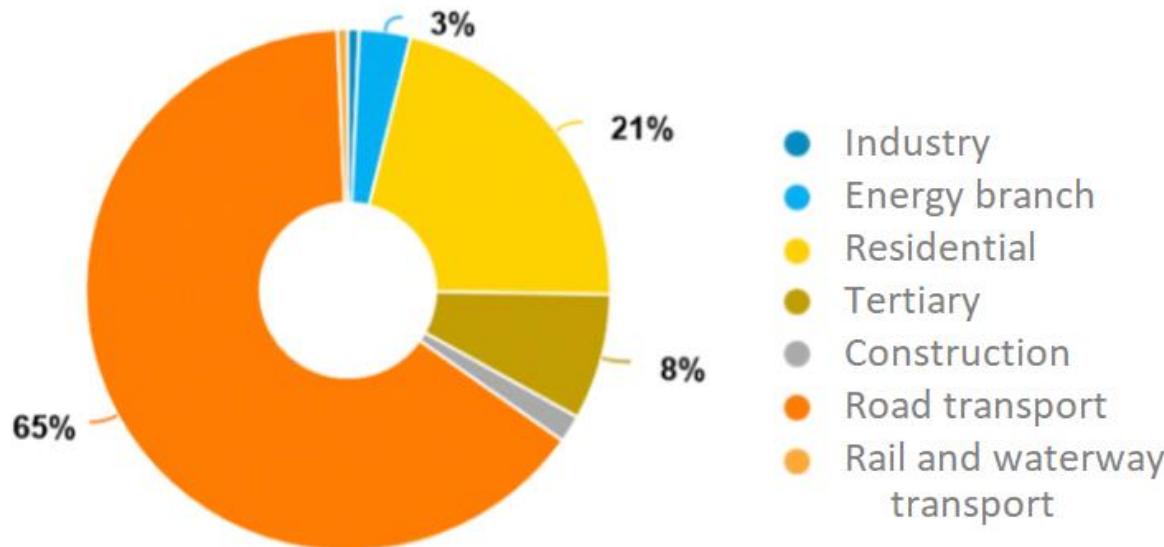
- ↘ noise nuisances during the day
- ↘ morbidity and mortality due to NO2
- ↘ transport time for drivers, riders and bus users
- ↗ noise nuisances during the night

Discussion and conclusion

In this paper:

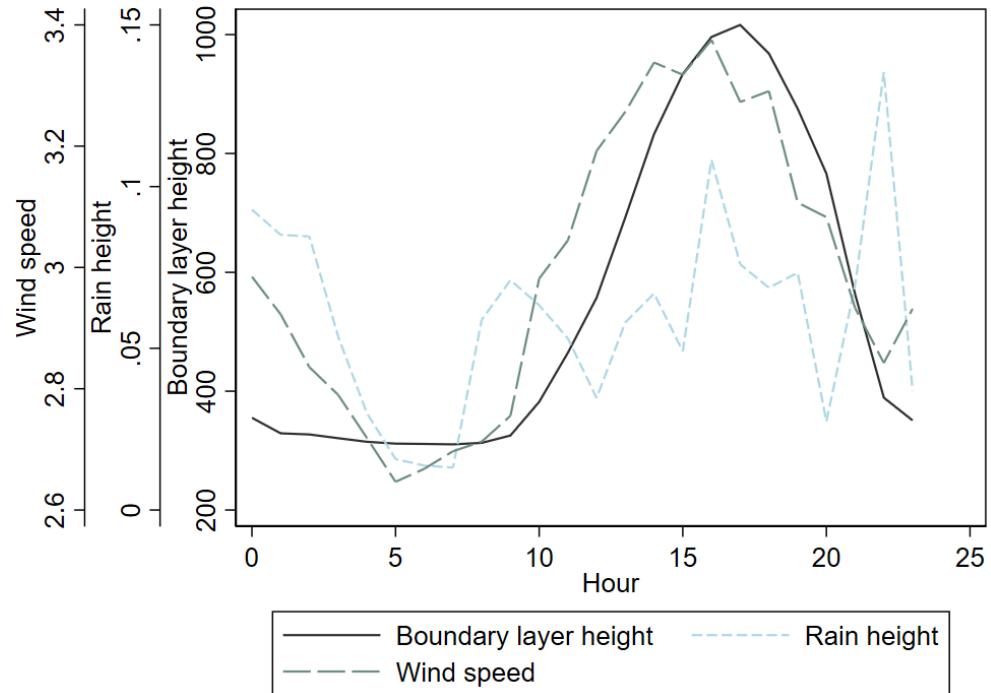
- Econometric method to estimate NOx reduction when nighttime deliveries
- CBA analysis of nighttime deliveries using the econometric predictions regarding speed and NOx

Conclusions:

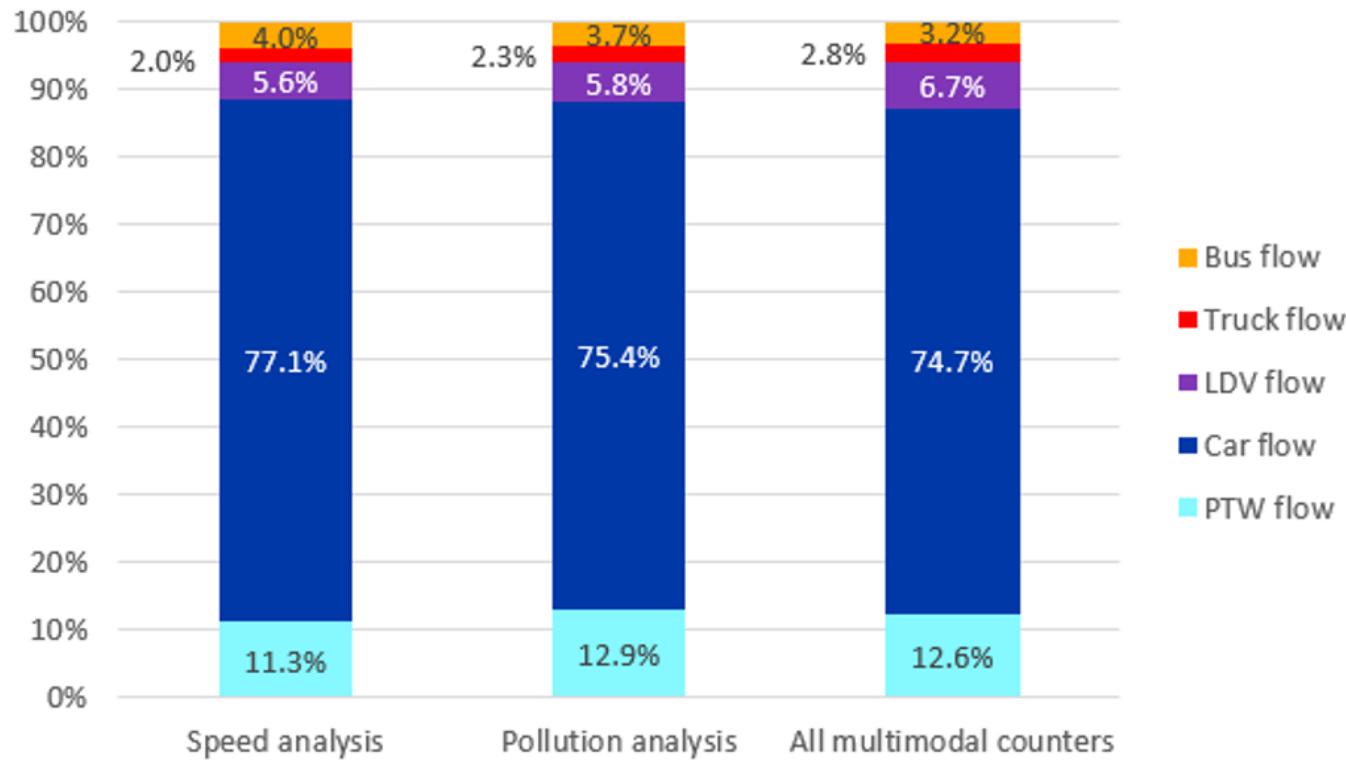

- Reduction of NOx with and without rebound effect
- CBA: costs > benefits

To be done:

- Robustness of the CBA: 1) scenario with rebound effect, 2) other nighttime delivery schemes, 3) other econometric specifications, 4) scenario with investments to make nighttime deliveries less noisy


Appendix

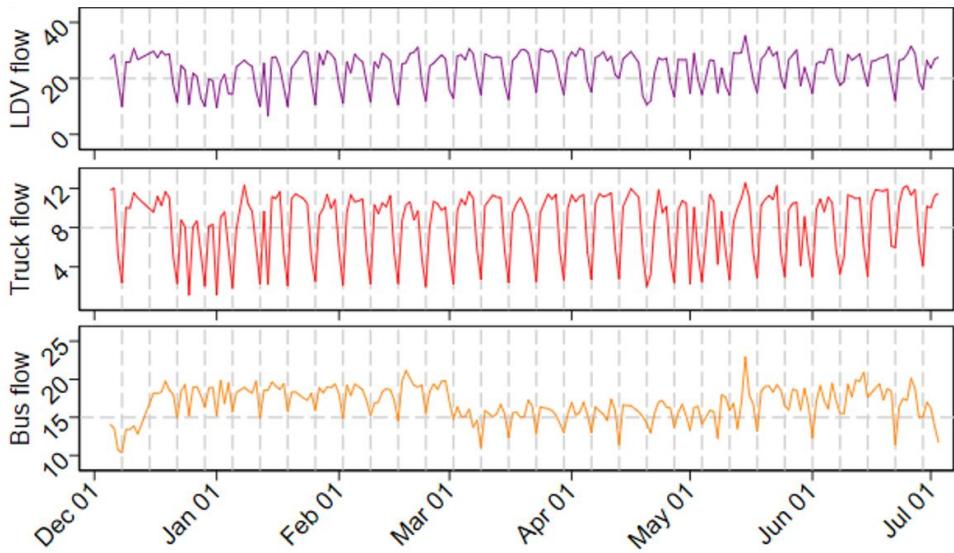
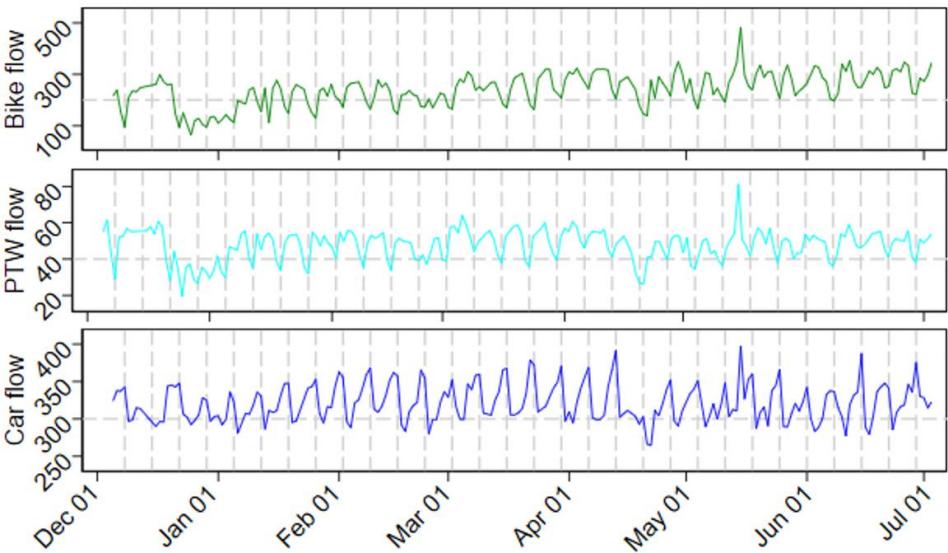
Emissions of NOx by sector in Paris 2015



Source : <https://www.paris.fr/pages/etat-des-lieux-de-la-qualite-de-l-air-a-paris-7101>
, data from the air pollution monitoring agency Airparif

Hourly variations of the boundary layer height, rain height and wind speed on average during the day

Share of each motorized vehicle type depending on the database



Estimates of the contribution of a truck to NOx pollution depending on the hour at which it is driven according to the combination of the two models

Hour	Mean nb. of trucks per hour	Mean pred. NOx concentr. when no truck	Contrib. of trucks at that hour to NOx
0	1.399	51.527	0.044%
1	1.472	51.531	0.037%
2	1.273	51.539	0.030%
3	1.361	51.539	0.029%
4	1.768	51.526	0.036%
5	3.23	51.486	0.044%
6	7.233	51.371	0.050%
7	13.052	51.146	0.061%
8	14.642	50.954	0.080%
9	15.797	50.904	0.080%
10	16.032	50.915	0.078%
11	15.448	51.037	0.066%
12	13.36	51.166	0.057%
13	10.811	51.239	0.057%
14	9.373	51.28	0.058%
15	9.336	51.318	0.050%
16	7.268	51.337	0.059%
17	5.73	51.338	0.075%
18	4.56	51.336	0.095%
19	3.524	51.37	0.104%
20	3.05	51.41	0.095%
21	2.893	51.457	0.068%
22	2.464	51.479	0.063%
23	1.564	51.509	0.062%

Estimates of the contribution of a LDV to NOx pollution depending on the hour at which it is driven according to the combination of the two models

Hour	Mean nb. of LDVs per hour	Mean pred. NOx concentr. when no LDV	Contrib. of one LDV driven at that hour to NOx
0	6.926	52.108	0.025%
1	6.039	52.127	0.023%
2	4.596	52.150	0.020%
3	3.809	52.162	0.019%
4	3.513	52.157	0.023%
5	4.583	52.141	0.024%
6	8.214	52.086	0.026%
7	17.766	51.952	0.027%
8	26.029	51.888	0.023%
9	29.436	51.893	0.020%
10	31.509	51.886	0.019%
11	33.839	51.876	0.018%
12	32.299	51.870	0.020%
13	31.028	51.875	0.020%
14	30.486	51.873	0.020%
15	31.304	51.870	0.020%
16	29.473	51.880	0.021%
17	28.077	51.887	0.021%
18	23.874	51.890	0.025%
19	17.320	51.928	0.030%
20	13.341	51.976	0.032%
21	11.709	52.018	0.030%
22	9.558	52.054	0.029%
23	7.741	52.074	0.031%

Hourly variations of traffic flows per vehicle type (average on all workdays)

Cost-Benefit Analysis – Scenario 90% trucks, 20% LDVs

Nb of truck and LDV hours shifted to the night = total nb of employees in logistics in Paris * share of truck drivers, long-haul drivers, delivery riders and couriers * nb of driving hours per day * nb of workdays per month * nb of months * % of truck and LDV hours shifted to the night * % of trucks and LDVs shifted to the night (90% of truck and LDV drivers)

Benefits

- transport time for drivers, riders and bus users** = nb of Paris inhabitants btw. 16 and 80 years old * weekly travel time * nb of weeks per year * speed gain * value of time * % non-walking trips
- morbidity and mortality due to NO2** = annual nb of new patients before the introduction of nighttime deliveries * $(1 - \exp(-\ln(\text{risk ratio})/10)) * \text{NO2 reduction due to nighttime deliveries}$
- noise nuisances during the day** = nb of truck and long-haul drivers' hours shifted to the night * marginal noise cost of truck during the day * average load * speed + nb of delivery riders and couriers' hours shifted to the night * speed * marginal noise cost of LDV during the day

Cost-Benefit Analysis – Scenario 90% trucks, 20% LDVs

- fuel expenses** = (g/km consumpt. when 12 to 20 km/h of truck / (20-12) * nb hours of truck and long-haul drivers shifted to the night / 0.9 + g/km consumpt. when 10 to 20 km/h of LDV / (20-10) * nb hours of delivery riders and couriers shifted to the night / 0.2) * speed before * delta speed due to nighttime deliveries * diesel price per L / diesel density
- CO2 externalities** = (g emitted when 12 to 20 km/h by a truck / (20-12) * nb of hours of truck and long-haul drivers shifted to the night / 0.9 + g emitted when 10 to 20 km/h by a LDV / (20-10) * nb of hours of delivery riders and couriers / 0.2) * speed before * delta speed due to nighttime deliveries * value of CO2
- total hours worked by truck and LDV drivers** = total nb of hours worked by truck and LDV drivers * (speed after – speed before) / speed before

Costs:

- noise nuisances during the night** = nb of hours worked by truck and long-haul drivers shifted to the night * average load * speed * marginal noise cost for trucks by night + nb of hours worked by delivery riders and couriers * speed * marginal noise cost for LDVs by night
- hourly wage of drivers** = total nb of hours of drivers shifted at the night * (hourly wage by night – hourly wage by day)