

Commuting, Air Quality and Welfare

Pascale Champalaune (TSE, INRAE) and Pol Cosentino (Dauphine-PSL)

November, 2025
AFET conference

Motivation

Motivation

- ▶ Ambient air pollution
 - ▶ Causes acute reactions, chronic diseases, and early deaths
 - ▶ World: 7 million a year (10% of total)
 - ▶ Europe: 350,000 (7%)
 - ▶ Lowers housing prices (measure of **amenities**) across cities ([Chay and Greenstone, 2005](#); [Bayer et al., 2009](#); [Champalaune, 2025](#)) and within cities (e.g., [Amini et al., 2022](#))
 - ▶ Deterioration of economic outcomes: lower labour supply and **productivity** ([Graff Zivin and Neidell, 2012](#); [Chang et al., 2016, 2019](#))

Motivation

- ▶ Ambient air pollution
 - ▶ Causes acute reactions, chronic diseases, and early deaths
 - ▶ World: 7 million a year (10% of total)
 - ▶ Europe: 350,000 (7%)
 - ▶ Lowers housing prices (measure of **amenities**) across cities ([Chay and Greenstone, 2005](#); [Bayer et al., 2009](#); [Champalaune, 2025](#)) and within cities (e.g., [Amini et al., 2022](#))
 - ▶ Deterioration of economic outcomes: lower labour supply and **productivity** ([Graff Zivin and Neidell, 2012](#); [Chang et al., 2016, 2019](#))
- ▶ Within cities, air pollution largely depends on **road traffic** ([Tessum et al., 2022](#))
 - ▶ Hence congestion pricing or low-emission zones (LEZ)

Motivation

- ▶ Ambient air pollution
 - ▶ Causes acute reactions, chronic diseases, and early deaths
 - ▶ World: 7 million a year (10% of total)
 - ▶ Europe: 350,000 (7%)
 - ▶ Lowers housing prices (measure of **amenities**) across cities ([Chay and Greenstone, 2005](#); [Bayer et al., 2009](#); [Champalaune, 2025](#)) and within cities (e.g., [Amini et al., 2022](#))
 - ▶ Deterioration of economic outcomes: lower labour supply and **productivity** ([Graff Zivin and Neidell, 2012](#); [Chang et al., 2016, 2019](#))
- ▶ Within cities, air pollution largely depends on **road traffic** ([Tessum et al., 2022](#))
 - ▶ Hence congestion pricing or low-emission zones (LEZ)
- ▶ Can **public transport infrastructure** be a useful tool?

This paper

Research questions

1. Does public transport (PT) infrastructure affect air quality?
2. How does accounting for this channel affect estimates of the welfare gains from PT infrastructure?

Methodology

- ▶ Focus on Paris metropolitan area
- ▶ Neighborhood-level information from census and administrative datasets
- ▶ **Reduced-form** evidence: effects of PT on air quality and other outcomes
- ▶ **Structural** evidence: welfare gains based on a new Quantitative Urban Model

Contributions to the literature

1. Economic effects of public transport infrastructure

- ▶ Reduced-form evidence on
 - ▶ employment, housing prices (e.g., Mayer and Trevien, 2017)
 - ▶ air quality (mostly developing countries) (Chen and Whalley, 2012; Li et al., 2019; Gendron-Carrier et al., 2022; Xie et al., 2024)
- *This paper: City where public transport usage already high*

Contributions to the literature

1. Economic effects of public transport infrastructure

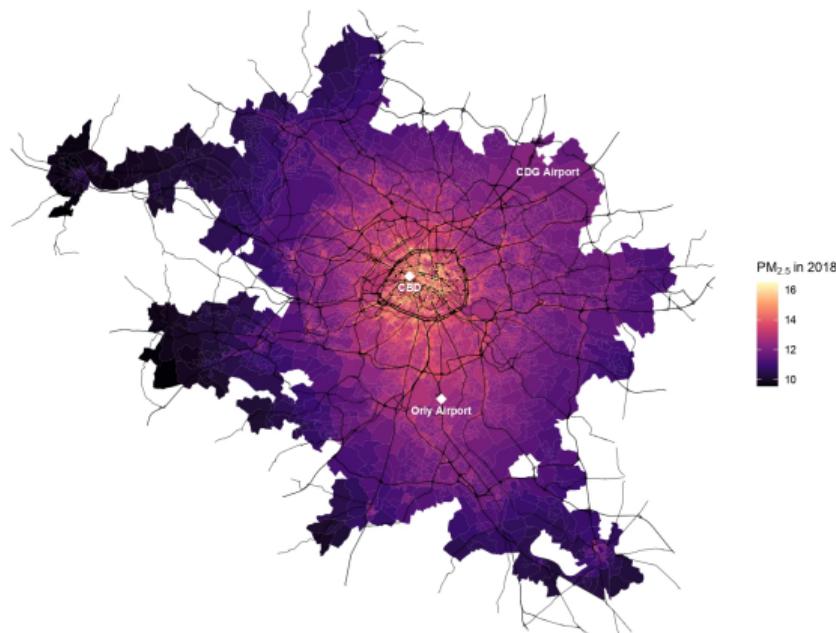
- ▶ Reduced-form evidence on
 - ▶ employment, housing prices (e.g., Mayer and Trevien, 2017)
 - ▶ air quality (mostly developing countries) (Chen and Whalley, 2012; Li et al., 2019; Gendron-Carrier et al., 2022; Xie et al., 2024)
- *This paper: City where public transport usage already high*

2. Quantitative Urban Model (QUM) à la Ahlfeldt et al. (2015)

- ▶ Transport infrastructure evaluation (e.g., Hebligh et al., 2020; Tsivanidis, 2025)
- *This paper:*
 - ▶ **Endogenous air pollution** at neighborhood level affecting amenities/productivity
 - ▶ Heterogeneity across **skill levels** and **transport modes**
 - ▶ Role of **averted road traffic pollution**

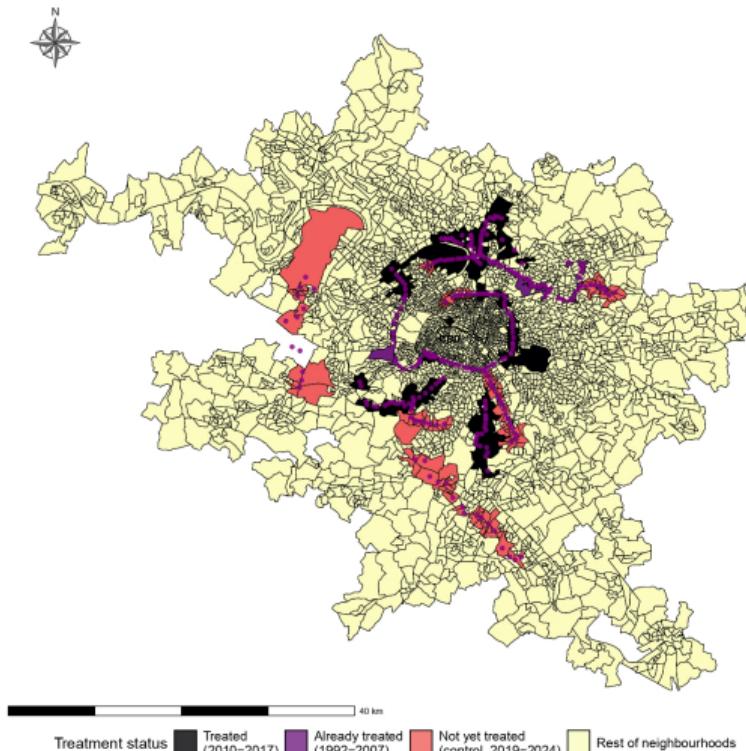
Focus on fine particulate matter (PM_{2.5})

What is PM_{2.5}?

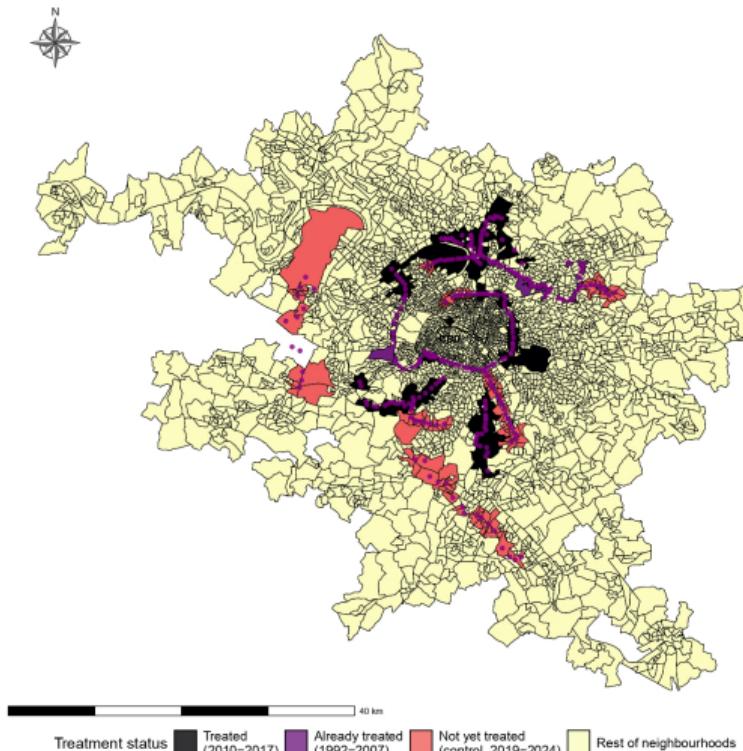

- ▶ Very small particles
 - ▶ Enter easily and stay in the body
- ▶ Directly emitted, or generated from chemical reactions between other pollutants
 - ▶ Main primary emitters in Paris:
road transport (35%), residential heating

Focus on fine particulate matter (PM_{2.5})

PM_{2.5} in 2018


What is PM_{2.5}?

- ▶ Very small particles
 - ▶ Enter easily and stay in the body
- ▶ Directly emitted, or generated from chemical reactions between other pollutants
 - ▶ Main primary emitters in Paris: **road transport (35%)**, residential heating


Reduced-form evidence

1. Tramway line openings in the 2010s

- ▶ Data for 2008 (pre-treatment) and 2018 (post-treatment)
- ▶ Compare **treated** neighborhoods (2010-2017) to **not-yet-treated** neighborhoods (2020-2024)

1. Tramway line openings in the 2010s

- ▶ Data for 2008 (pre-treatment) and 2018 (post-treatment)
- ▶ Compare **treated** neighborhoods (2010-2017) to **not-yet-treated** neighborhoods (2020-2024)

↓ 3.5% $\text{PM}_{2.5}$ concentration [Table](#)

↑ 6% housing prices [Table](#)

↑ 5ppt (12%) share of PT users
[Table](#)

Structural evidence

Quantitative Urban Model: objectives and ingredients

1. Rationalize within-city spatial equilibrium with
 - ▶ commuting flows by skill \times mode
 - ▶ local air pollution

Quantitative Urban Model: objectives and ingredients

1. Rationalize within-city spatial equilibrium with
 - ▶ commuting flows by skill×mode
 - ▶ local air pollution
2. Recover unobserved location characteristics
 - a) skill-specific wages
 - b) skill-specific amenities
 - c) productivity
 - d) housing demand

Quantitative Urban Model: objectives and ingredients

1. Rationalize within-city spatial equilibrium with
 - ▶ commuting flows by skill×mode
 - ▶ local air pollution
2. Recover unobserved location characteristics
 - a) skill-specific wages
 - b) skill-specific amenities
 - c) productivity
 - d) housing demand
3. Counterfactual exercises
 - i) *Grand Paris Express*
 - ii) banning cars

Quantitative Urban Model: objectives and ingredients

1. Rationalize within-city spatial equilibrium with

- ▶ commuting flows by skill \times mode
- ▶ local air pollution

2. Recover unobserved location characteristics

- a) skill-specific wages
- b) skill-specific amenities
- c) productivity
- d) housing demand

3. Counterfactual exercises

- i) *Grand Paris Express*
- ii) banning cars

Required data at the neighborhood level

- a) residence & workplace empl. by skill \times mode
- b) air pollution
- c) rent
- d) bilateral commuting time

Model Environment

QUM: Workers

- ▶ A homogeneous mass of type-specific workers within an open city of N locations
- ▶ An individual o of type g derives a utility from living in n and working in i , using mode m :

$$U_{nim,g}(o) = \frac{B_{n,g} w_{i,g}}{d_{nim,g} P_n^{\beta_g} Q_n^{1-\beta_g}} z_{nim,g}(o)$$

- ▶ $B_{n,g}$: type-specific amenities enjoyed at residence n
- ▶ $w_{i,g}$: type-specific wage in workplace i
- ▶ $d_{nim,g}$: commuting costs from residence n to workplace i , using transport mode m
- ▶ P_n : the price of final consumption good in n (numéraire: $P_n = 1$)
- ▶ Q_n : rent in n , and $(1 - \beta_g)$ is the share of income devoted to housing
- ▶ $z_{nim,g}(o)$: type-specific idiosyncratic shock following Fréchet distribution,

$$F(z_{nim,g}(o)) = e^{-T_{nm,g} E_{im,g} z_{nim,g}^{-\epsilon_g}} \quad z_{nim,g} > 0, \epsilon_g > 1$$

QUM: Workers

Using standard properties of Fréchet distribution (McFadden, 1974)

- ▶ Probability that a worker chooses the location pair (n, i) , using mode m :

$$\lambda_{nim,g} = \frac{L_{nim,g}}{L_{N,g}} = \frac{T_{nm,g} E_{im,g} (B_{n,g} w_{i,g})^{\epsilon_g} (d_{nim,g} Q_n^{1-\beta_g})^{-\epsilon_g}}{\sum_{k \in N} \sum_{l \in N} \sum_{m'} T_{km',g} E_{lm',g} (B_{k,g} w_{l,g})^{\epsilon_g} (d_{klm',g} Q_k^{1-\beta_g})^{-\epsilon_g}}$$

- ▶ k, l : all the other residences and workplaces in the city
- ▶ $m' \in \{car, public\}$: all transport modes

QUM: Workers

Using standard properties of Fréchet distribution (McFadden, 1974)

- ▶ Probability that a worker chooses the location pair (n, i) , using mode m :

$$\lambda_{nim,g} = \frac{L_{nim,g}}{L_{N,g}} = \frac{T_{nm,g} E_{im,g} (B_{n,g} w_{i,g})^{\epsilon_g} (d_{nim,g} Q_n^{1-\beta_g})^{-\epsilon_g}}{\sum_{k \in N} \sum_{l \in N} \sum_{m'} T_{km',g} E_{lm',g} (B_{k,g} w_{l,g})^{\epsilon_g} (d_{klm',g} Q_k^{1-\beta_g})^{-\epsilon_g}}$$

- ▶ k, l : all the other residences and workplaces in the city
- ▶ $m' \in \{car, public\}$: all transport modes
- ▶ Expected utility: $\mathbb{E}[U_{nim,g}] = \bar{U}_g = \delta_g \left[\sum_{k \in N} \sum_{l \in N} \sum_{m'} \Phi_{klm',g} \right]^{1/\epsilon_g}$

QUM: Workers

Using standard properties of Fréchet distribution (McFadden, 1974)

- ▶ Probability that a worker chooses the location pair (n, i) , using mode m :

$$\lambda_{nim,g} = \frac{L_{nim,g}}{L_{N,g}} = \frac{T_{nm,g} E_{im,g} (B_{n,g} w_{i,g})^{\epsilon_g} (d_{nim,g} Q_n^{1-\beta_g})^{-\epsilon_g}}{\sum_{k \in N} \sum_{l \in N} \sum_{m'} T_{km',g} E_{lm',g} (B_{k,g} w_{l,g})^{\epsilon_g} (d_{klm',g} Q_k^{1-\beta_g})^{-\epsilon_g}}$$

- ▶ k, l : all the other residences and workplaces in the city
- ▶ $m' \in \{car, public\}$: all transport modes
- ▶ Expected utility: $\mathbb{E}[U_{nim,g}] = \bar{U}_g = \delta_g \left[\sum_{k \in N} \sum_{l \in N} \sum_{m'} \Phi_{klm',g} \right]^{1/\epsilon_g}$
- ▶ Share of type-specific workers choosing the Paris region: $\frac{L_{N,g}}{L_{M,g}} = \left(\frac{\bar{U}_g}{\bar{U}_g} \right)^\phi$

QUM: Firms

Firms produce a final good using a Cobb-Douglas technology under CRS:

$$Y_i = A_i \left(\frac{L_i}{\alpha} \right)^\alpha \left(\frac{H_i^L}{1-\alpha} \right)^{1-\alpha},$$

- ▶ A_i : productivity at workplace i
- ▶ L_i : workforce used in production follows a CES function between both (low- and high-skilled) types of workers
 - ▶ $L_i = (\sum_g a_{i,g} L_{i,g}^\rho)^{1/\rho}$
 - ▶ $a_{i,g}$ represents the skill intensity of type g in location i and ρ the substitution parameter
- ▶ H_i^L : commercial floorspace used for production

QUM: Housing market

- ▶ Housing is owned by landlords
- ▶ Following Combes et al. (2021), housing (H_i) is supplied by developers with a Cobb-Douglas technology function of land (K_i) and capital (M_i):

$$H_i = k_i Q_i^{\frac{(1-\mu)}{\mu}}$$

- ▶ $k_i = (1 - \mu)^{\frac{(1-\mu)}{\mu}} K_i$: land availability in location i
- ▶ Q_i : rent in location i
- ▶ $\frac{1-\mu}{\mu}$: housing supply elasticity
- ▶ No distortion of housing allocation between residents and firms

QUM: Agglomeration forces - standard ingredients

Allow productivity to depend on

- ▶ **exogenous** production fundamentals
- ▶ **endogenous** production externalities

$$A_i = a_i \left(\frac{L_i}{K_i} \right)^{\eta^L}$$

Allow amenities to depend on

- ▶ **exogenous** residential fundamentals
- ▶ **endogenous** residential externalities

$$B_{n,g} = b_{n,g} \left(\frac{R_n}{K_n} \right)^{\eta^R}$$

QUM: Agglomeration forces - new ingredients

- ▶ Choosing the car **generates air pollution along the route** used to commute from residence to workplace, such that, in neighborhood j :

$$\Xi_j = \psi_j e^{\theta^F F_j}$$

- ▶ θ^F estimated using neighborhood-level census data and 50m×50m PM_{2.5} data

QUM: Agglomeration forces - new ingredients

- ▶ Choosing the car **generates air pollution along the route** used to commute from residence to workplace, such that, in neighborhood j :

$$\Xi_j = \psi_j e^{\theta^F F_j}$$

- ▶ θ^F estimated using neighborhood-level census data and 50m×50m PM_{2.5} data
- ▶ **Decrease in neighborhood amenity and productivity** when it is crossed by cars

$$B_{n,g} = b_{n,g} \left(\frac{R_n}{K_n} \right)^{\eta^R} e^{\zeta_g^R \Xi_n}$$

$$A_i = a_i \left(\frac{L_i}{K_i} \right)^{\eta^L} e^{\zeta_g^L \Xi_i}$$

- ▶ ζ_g^R estimated, ζ^L calibrated ([Champalaune, 2025](#))

Model Quantification

QUM: steps for model quantification

1. structural parameters calibration and estimation [Slides](#)

QUM: steps for model quantification

1. structural parameters calibration and estimation [Slides](#)
2. recover (type-specific) **wages** [Slides](#), using
 - ▶ conditional probabilities on living/working + commuting market clearing condition

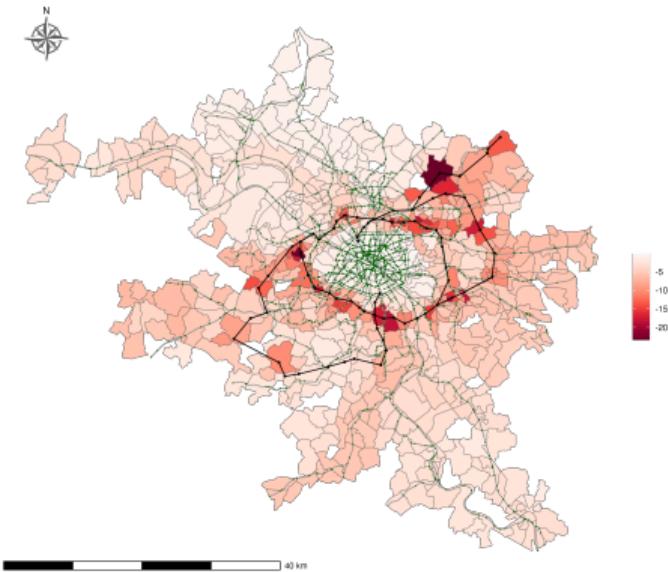
QUM: steps for model quantification

1. structural parameters calibration and estimation [Slides](#)
2. recover (type-specific) **wages** [Slides](#), using
 - ▶ conditional probabilities on living/working + commuting market clearing condition
3. recover **skill intensity** [Slides](#), using
 - ▶ FOC of firm profit maximization w.r.t to labor supply

QUM: steps for model quantification

1. structural parameters calibration and estimation [Slides](#)
2. recover (type-specific) **wages** [Slides](#), using
 - ▶ conditional probabilities on living/working + commuting market clearing condition
3. recover **skill intensity** [Slides](#), using
 - ▶ FOC of firm profit maximization w.r.t to labor supply
4. recover **productivity** [Slides](#), using
 - ▶ FOCs of firm profit maximization
 - ▶ free entry condition

QUM: steps for model quantification


1. structural parameters calibration and estimation [Slides](#)
2. recover (type-specific) **wages** [Slides](#), using
 - ▶ conditional probabilities on living/working + commuting market clearing condition
3. recover **skill intensity** [Slides](#), using
 - ▶ FOC of firm profit maximization w.r.t to labor supply
4. recover **productivity** [Slides](#), using
 - ▶ FOCs of firm profit maximization
 - ▶ free entry condition
5. recover (type-specific) **amenities** [Slides](#), using
 - ▶ expected utility in a open city settings

QUM: steps for model quantification

1. structural parameters calibration and estimation [Slides](#)
2. recover (type-specific) **wages** [Slides](#), using
 - ▶ conditional probabilities on living/working + commuting market clearing condition
3. recover **skill intensity** [Slides](#), using
 - ▶ FOC of firm profit maximization w.r.t to labor supply
4. recover **productivity** [Slides](#), using
 - ▶ FOCs of firm profit maximization
 - ▶ free entry condition
5. recover (type-specific) **amenities** [Slides](#), using
 - ▶ expected utility in a open city settings
6. recover **housing** [Slides](#), using
 - ▶ housing market clearing condition
 - ▶ commercial and residential housing demand

Counterfactual Exercises

Grand Paris Express (planned 2030+)

- ▶ **Largest PT infrastructure project** since the suburban rail network (RER) of the 1970s
- ▶ **Doubling the length:** 200 km (current metro: 226 km), 68 new stations
- ▶ Much faster commercial speed

Grand Paris Express: Welfare gains

	Counterfactual scenario		
	(1)	(2)	(3)
<u>Welfare $\Delta\%$</u>			
High-skilled	2.15		
Low-skilled	1.07		
<u>$\lambda_{\text{Public}} \Delta\%$</u>			
High-skilled	3.5		
Low-skilled	3.2		
<u>(Mean) pollution $\Delta\%$</u>			
Whole area	−0.46		
<u>Parameters</u>			
Migration elasticity	0.0		
η^L	0.0		
η^R	0.0		
ζ_L^R	−0.015		
ζ_H^R	−0.032		
ζ^L	−0.03		

Full results

Grand Paris Express: Welfare gains

	Counterfactual scenario		
	(1)	(2)	(3)
<u>Welfare $\Delta\%$</u>			
High-skilled	2.15	1.32	
Low-skilled	1.07	0.69	
<u>$\lambda_{\text{Public}} \Delta\%$</u>			
High-skilled	3.5	8.3	
Low-skilled	3.2	6.1	
<u>(Mean) pollution $\Delta\%$</u>			
Whole area	-0.46	-0.38	
<u>Parameters</u>			
Migration elasticity	0.0	3.0	
η^L	0.0	0.07	
η^R	0.0	0.1	
ζ_L^R	-0.015	-0.015	
ζ_H^R	-0.032	-0.032	
ζ^L	-0.03	-0.03	

Full results

Grand Paris Express: Welfare gains

	Counterfactual scenario		
	(1)	(2)	(3)
<u>Welfare $\Delta\%$</u>			
High-skilled	2.15	1.32	1.04
Low-skilled	1.07	0.69	0.48
<u>$\lambda_{\text{Public}} \Delta\%$</u>			
High-skilled	3.5	8.3	7.4
Low-skilled	3.2	6.1	5.4
<u>(Mean) pollution $\Delta\%$</u>			
Whole area	-0.46	-0.38	-0.41
<u>Parameters</u>			
Migration elasticity	0.0	3.0	3.0
η^L	0.0	0.07	0.07
η^R	0.0	0.1	0.1
ζ_L^R	-0.015	-0.015	0.0
ζ_H^R	-0.032	-0.032	0.0
ζ^L	-0.03	-0.03	0.0

Full results

Banning cars: Welfare gains

	Counterfactual scenario		
	(1)	(2)	(3)
<u>Welfare $\Delta\%$</u>			
High-skilled	0.87		
Low-skilled	0.6		
<u>$\lambda_{\text{Public}} \Delta\%$</u>			
High-skilled	8.4		
Low-skilled	4.7		
<u>(Mean) pollution $\Delta\%$</u>			
Whole area	−1.25		
Paris municipality	−5.69		
<u>Parameters</u>			
Migration elasticity	0.0		
η^L	0.0		
η^R	0.0		
ζ_L^R	−0.015		
ζ_H^R	−0.032		
ζ^L	−0.03		

Banning cars: Welfare gains

	Counterfactual scenario		
	(1)	(2)	(3)
<u>Welfare $\Delta\%$</u>			
High-skilled	0.87	0.65	
Low-skilled	0.6	0.44	
<u>$\lambda_{\text{Public}} \Delta\%$</u>			
High-skilled	8.4	11.3	
Low-skilled	4.7	6.9	
<u>(Mean) pollution $\Delta\%$</u>			
Whole area	-1.25	-1.29	
Paris municipality	-5.69	-5.69	
<u>Parameters</u>			
Migration elasticity	0.0	3.0	
η^L	0.0	0.07	
η^R	0.0	0.1	
ζ_L^R	-0.015	-0.015	
ζ_H^R	-0.032	-0.032	
ζ^L	-0.03	-0.03	

Banning cars: Welfare gains

	Counterfactual scenario		
	(1)	(2)	(3)
Welfare $\Delta\%$			
High-skilled	0.87	0.65	-0.55
Low-skilled	0.6	0.44	-0.32
$\lambda_{\text{Public}} \Delta\%$			
High-skilled	8.4	11.3	5.2
Low-skilled	4.7	6.9	2.7
(Mean) pollution $\Delta\%$			
Whole area	-1.25	-1.29	-1.14
Paris municipality	-5.69	-5.69	-5.69
Parameters			
Migration elasticity	0.0	3.0	3.0
η^L	0.0	0.07	0.07
η^R	0.0	0.1	0.1
ζ_L^R	-0.015	-0.015	0.0
ζ_H^R	-0.032	-0.032	0.0
ζ^L	-0.03	-0.03	0.0

Takeaways

1. **Public transport** infrastructure **decreases air pollution**

- ▶ Even in a context with high initial public transport take-up
- ▶ Omitting this leads to an **underestimation of welfare gains**

Takeaways

1. **Public transport** infrastructure **decreases air pollution**
 - ▶ Even in a context with high initial public transport take-up
 - ▶ Omitting this leads to an **underestimation of welfare gains**
2. Decrease in air pollution **amplifies** baseline increases in **amenity and productivity** from public transport
 - ▶ Further increases housing prices
 - ▶ Further fuels **sorting** of higher-skilled households into neighborhoods with new infrastructure and lower air pollution
 - ▶ Public transport as a vector of disparities in exposure to air pollution

Thank you!

Pol Cosentino

Pol.cosentino@dauphine.psl.eu

Université Paris-Dauphine, Université PSL,
LEDA,
PARIS, FRANCE

References I

Ahlfeldt, G. M., Redding, S. J., Sturm, D. M., and Wolf, N. (2015). The economics of density: Evidence from the Berlin Wall. *Econometrica*, 83(6):2127–2189.

Amini, A., Nafari, K., and Singh, R. (2022). Effect of air pollution on house prices: Evidence from sanctions on Iran. *Regional Science and Urban Economics*, 93:103720.

Bayer, P., Keohane, N., and Timmins, C. (2009). Migration and hedonic valuation: The case of air quality. *Journal of Environmental Economics and Management*, 58(1):1–14.

Card, D. (2009). Immigration and inequality. *American Economic Review*, 99(2):1–21.

Cette, G., Koehl, L., and Philippon, T. (2019). The Labor Share in the Long Term: A Decline? *Economics and Statistics*, (510-511-512):35–51.

Champalaune, P. (2025). Wages, Agglomeration and Air Pollution. Working Paper.

Chang, T. Y., Graff Zivin, J., Gross, T., and Neidell, M. (2016). Particulate pollution and the productivity of pear packers. *American Economic Journal: Economic Policy*, 8(3):141–69.

Chang, T. Y., Graff Zivin, J., Gross, T., and Neidell, M. (2019). The effect of pollution on worker productivity: Evidence from call center workers in China. *American Economic Journal: Applied Economics*, 11(1):151–72.

References II

Chay, K. Y. and Greenstone, M. (2005). Does air quality matter? Evidence from the housing market. *Journal of Political Economy*, 113(2):376–424.

Chen, Y. and Whalley, A. (2012). Green infrastructure: The effects of urban rail transit on air quality. *American Economic Journal: Economic Policy*, 4(1):58–97.

Combes, P.-P., Duranton, G., and Gobillon, L. (2019). The Costs of Agglomeration: House and Land Prices in French Cities. *The Review of Economic Studies*, 86(4):1556–1589.

Combes, P.-P., Duranton, G., and Gobillon, L. (2021). The production function for housing: Evidence from France. *Journal of Political Economy*, 129(10):2766–2816.

Gendron-Carrier, N., Gonzalez-Navarro, M., Polloni, S., and Turner, M. A. (2022). Subways and urban air pollution. *American Economic Journal: Applied Economics*, 14(1):164–196.

Graff Zivin, J. and Neidell, M. (2012). The impact of pollution on worker productivity. *American Economic Review*, 102(7):3652–73.

Gutiérrez, G. and Piton, S. (2020). Revisiting the Global Decline of the (Non-housing) Labor Share. *American Economic Review: Insights*, 2(3):321–338.

References III

Heblich, S., Redding, S. J., and Sturm, D. M. (2020). The Making of the Modern Metropolis: Evidence from London. *Quarterly Journal of Economics*, 135(4):2059–2133.

Li, S., Liu, Y., Purevjav, A.-O., and Yang, L. (2019). Does subway expansion improve air quality? *Journal of Environmental Economics and Management*, 96:213–235.

Mayer, T. and Trevien, C. (2017). The impact of urban public transportation: Evidence from the Paris region. *Journal of Urban Economics*, 102:1–21.

McFadden, D. (1974). The measurement of urban travel demand. *Journal of Public Economics*, 3(4):303–328.

Monte, F., Redding, S. J., and Rossi-Hansberg, E. (2018). Commuting, migration, and local employment elasticities. *American Economic Review*, 108(12):3855–3890.

Takeda, K. and Yamagishi, A. (2024). The Economic Dynamics of City Structure: Evidence from Hiroshima's Recovery. *CEP Discussion Paper No. 1988*.

Tessum, M. W., Anenberg, S. C., Chafe, Z. A., Henze, D. K., Kleiman, G., Kheirbek, I., Marshall, J. D., and Tessum, C. W. (2022). Sources of ambient pm_{2.5} exposure in 96 global cities. *Atmospheric Environment*, 286:119234.

References IV

Tsivanidis, N. (2025). Evaluating the Impact of Urban Transit Infrastructure: Evidence from Bogotá's TransMilenio. *American Economic Review*.

Xie, L., Zou, T., Linn, J., and Yan, H. (2024). Can building Subway systems improve air quality? New evidence from multiple cities and machine learning. *Environmental and Resource Economics*, 87(4):1009–1044.

Reduced-form effects of tramway openings: Air pollution

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta_{2018-2008} \text{ PM}_{2.5}$								
Treated	-0.75*** (0.21)	-0.73*** (0.21)	-0.37** (0.19)	-0.39** (0.17)	-0.76*** (0.14)	-0.75*** (0.14)	-0.60*** (0.19)	-0.61*** (0.19)
(log) workers in 2008		-0.35** (0.16)		-0.24 (0.15)		-0.15 (0.16)		-0.12 (0.15)
(log) distance to CBD			0.87** (0.36)	0.80** (0.34)			0.51 (0.33)	0.48 (0.32)
2008 mean PM _{2.5}	16.94	16.94	16.94	16.94	16.94	16.94	16.94	16.94
Mean outcome	-3.76	-3.76	-3.76	-3.76	-3.76	-3.76	-3.76	-3.76
R ²	0.105	0.120	0.154	0.161	0.485	0.487	0.493	0.495
Observations	328	328	328	328	328	328	328	328
Fare zone FE					Yes	Yes	Yes	Yes

Standard errors clustered at the tram stop level in parentheses. Signif. codes: ***: 0.01, **: 0.05, *: 0.1.

Reduced-form effects of tramway openings: Housing prices

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta_{2018-2008} \log \text{housing price}$								
Treated	0.08*** (0.02)	0.08*** (0.02)	0.08*** (0.02)	0.07*** (0.02)	0.05** (0.02)	0.05** (0.02)	0.05** (0.02)	0.05** (0.02)
(log) workers in 2008	0.05 (0.04)		0.05 (0.04)		0.02 (0.04)		0.02 (0.04)	0.04 (0.04)
(log) housing price in 2008		0.02 (0.04)		0.005 (0.03)			-0.07 (0.05)	-0.08* (0.04)
2008 mean housing price	8.12	8.12	8.12	8.12	8.12	8.12	8.12	8.12
Mean outcome	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
R ²	0.048	0.055	0.049	0.055	0.124	0.125	0.138	0.144
Observations	328	328	328	328	328	328	328	328
Fare zone FE					Yes	Yes	Yes	Yes

Standard errors clustered at the tram stop level in parentheses. Signif. codes: ***: 0.01, **: 0.05, *: 0.1.
Log housing price is a neighborhood-year fixed effect from a transaction-level regression of log housing price per square metre on floor area, lot size and a fixed effect for quarter of transaction.

Reduced-form effects of tramway openings: PT commuters

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta_{2018-2008}$ Share resident PT commuters								
Treated	0.01 (0.02)	0.01 (0.02)	0.06** (0.02)	0.06*** (0.02)	0.01 (0.02)	0.01 (0.02)	0.05** (0.02)	0.05** (0.02)
(log) workers in 2008		0.03 (0.04)		0.06* (0.03)		0.03 (0.04)		0.05* (0.03)
2008 mean share PT	0.403	0.403	0.403	0.403	0.403	0.403	0.403	0.403
Control 2008 share PT			Yes	Yes			Yes	Yes
R ²	0.001	0.005	0.197	0.213	0.007	0.012	0.210	0.222
Observations	328	328	328	328	328	328	328	328
Fare zone FE					Yes	Yes	Yes	Yes

Standard errors clustered at the tram stop level in parentheses. Signif. codes: ***: 0.01, **: 0.05, *: 0.1.

Reduced-form effects of tramway openings: Car commuters

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta_{2018-2008}$ Share resident car commuters								
Treated	-0.004 (0.02)	-0.002 (0.02)	-0.03 (0.02)	-0.03 (0.02)	0.01 (0.02)	0.01 (0.02)	-0.02 (0.02)	-0.02 (0.02)
(log) workers in 2008		-0.04* (0.02)		-0.02 (0.02)		-0.04* (0.02)		-0.003 (0.02)
2008 mean share car	0.286	0.286	0.286	0.286	0.286	0.286	0.286	0.286
Control 2008 share car			Yes	Yes			Yes	Yes
R ²	0.001	0.010	0.169	0.172	0.032	0.040	0.219	0.219
Observations	328	328	328	328	328	328	328	328
Fare zone FE					Yes	Yes	Yes	Yes

Standard errors clustered at the tram stop level in parentheses. Signif. codes: ***: 0.01, **: 0.05, *: 0.1.

Step 1: model parameters

Parameter	Description	Method	Value
Calibrated			
ζ^L	PM _{2.5} productivity loss	Champalaune (2025)	-0.03
η^R	Residential aggro forces	Ahlfeldt et al. (2015); Heblisch et al. (2020)	0.10
η^L	Production aggro forces	Ahlfeldt et al. (2015); Heblisch et al. (2020)	0.07
α	Labor share	Cette et al. (2019); Gutiérrez and Piton (2020)	0.75
$1 - \beta_H$	Housing share, high-skilled	Combes et al. (2019)	0.3
$1 - \beta_L$	Housing share, low-skilled	Combes et al. (2019)	0.35
$1 - \mu$	Machinery capital	Combes et al. (2021)	0.54
ρ	Elasticity of skill substitution	Card (2009)	0.3
ϕ	Elasticity of migration	Monte et al. (2018); Takeda and Yamagishi (2024)	3
Estimated			
$\nu_{m,g}$	Commuting time elasticity	OLS, gravity equation	Table
ϵ_H	Fréchet parameter, high-skilled	Min. variance	7.04
ϵ_L	Fréchet parameter, low-skilled	Min. variance	10.38
ζ_H^R	PM _{2.5} disamenity effect, high-skilled	OLS, FD	-0.032
ζ_L^R	PM _{2.5} disamenity effect, low-skilled	OLS, FD	-0.015
θ^F	PM _{2.5} elasticity to commuting	OLS, FD	0.0276

Back

Step 2: type-specific wages ($w_{i,g}$)

Using

- ▶ $\omega_{im,g} = E_{im,g} w_{i,g}^{\epsilon_g}$, and an estimated $v_{m,g} = -\kappa_m \epsilon_g$
- ▶ a normalisation of the scale parameter $E_{i PT, g}$ for public transport, and an estimation of ϵ_g
- ▶ prob. that a worker commutes to workplace i using mode m conditionally on living in n
- ▶ commuting market clearing conditions

$$L_{im,g} = \sum_{n \in N} \frac{(\omega_{im,g} / e^{v_{mg} \tau_{nim}})}{\sum_{l \in N} (\omega_{lm,g} / e^{v_{mg} \tau_{nlm}})} R_{nm,g}$$

→ retrieve type specific wages vector ($w_{i,g}$)

Back

Step 3: skill intensity ($a_{i,L}$)

Using

- ▶ estimated $w_{i,g}$
- ▶ observed vectors
- ▶ FOC of firm profit maximization with respect to the labor supply

$$\frac{1 - a_{i,L}}{a_{i,L}} = \frac{w_{i,H}}{w_{i,L}} \left(\frac{L_{i,L}}{L_{i,H}} \right)^{\rho-1}$$

→ retrieve skill intensity vector

Back

Step 4: productivity (A_i)

Using

- ▶ free entry condition
- ▶ FOCs of firm profit maximization
- ▶ aggregate wage cost: $W_i = \left(\sum_g a_{i,g}^{\frac{1}{1-\rho}} w_{i,g}^{\frac{\rho}{\rho-1}} \right)^{\frac{\rho-1}{\rho}}$

$$A_i = W_i^\alpha Q_i^{1-\alpha}$$

→ retrieve productivity vector

Back

Step 5: type-specific amenities ($B_{n,g}$)

Using

- ▶ type-specific probability of residence $\lambda_{nm,g}^R$
- ▶ expected utility
- ▶ population mobility
- ▶ open city settings

$$\Omega_{nm,g} = \frac{\lambda_{nm,g}^R Q^{(1-\beta_g)\epsilon_g}}{\sum_{i \in N} (\omega_{im,g} / e^{\nu_{mg} \tau_{nim}})}$$

→ retrieve amenities vector

Back

Step 6: housing development (H_n)

Housing market clears,

$$H_n = \underbrace{\sum_{m'} \sum_g (1 - \beta_g) \sum_{i \in N} \lambda_{nim|nm,g}^R \frac{w_{i,g}}{Q_n} R_{nm,g}}_{=H_n^R} + \underbrace{\left((1 - \alpha) \frac{A_i}{Q_i} \right)^{1/\alpha} L_i}_{=H_n^L}$$

with,

- ▶ H_n^R the residential housing demand in location n
- ▶ H_n^L the total commercial housing demand in location n

[Back](#)

Gravity equation - empirical specification

Log-linearising $\lambda_{nim,g}$ leads to this gravity equation of commuting flows:

$$\ln \lambda_{nim,g} = \zeta_{im,g} + \vartheta_{nm,g} - \underbrace{\epsilon_g \kappa_{m,g}}_{\nu_{m,g}} \tau_{nim} + \xi_{nim,g}$$

where

- ▶ $\lambda_{nim,g}$: type-specific commuting flows between residence n and workplace i with mode m
- ▶ τ_{nim} : commuting time between residence n and workplace i with mode m
- ▶ $\nu_{m,g}$: type-specific commuting time disutility by mode m
- ▶ $\zeta_{im,g} \equiv \ln(E_{im,g} w_{i,g}^{\epsilon_g})$: type-specific workplace \times mode FE
- ▶ $\vartheta_{nm,g} \equiv \ln(T_{nm,g} B_{n,g}^{\epsilon_g} Q_n^{(\beta_g - 1)\epsilon_g})$: type-specific residence \times mode FE
- ▶ $\xi_{nim,g} \equiv -\ln\left(\sum_{k \in N} \sum_{l \in N} \sum_{m'} \Phi_{klm',g}\right)$: error term

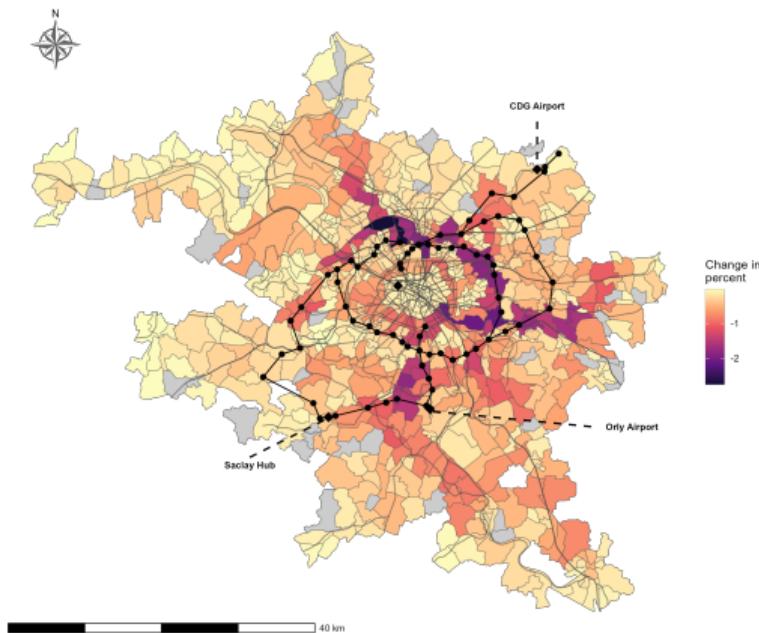
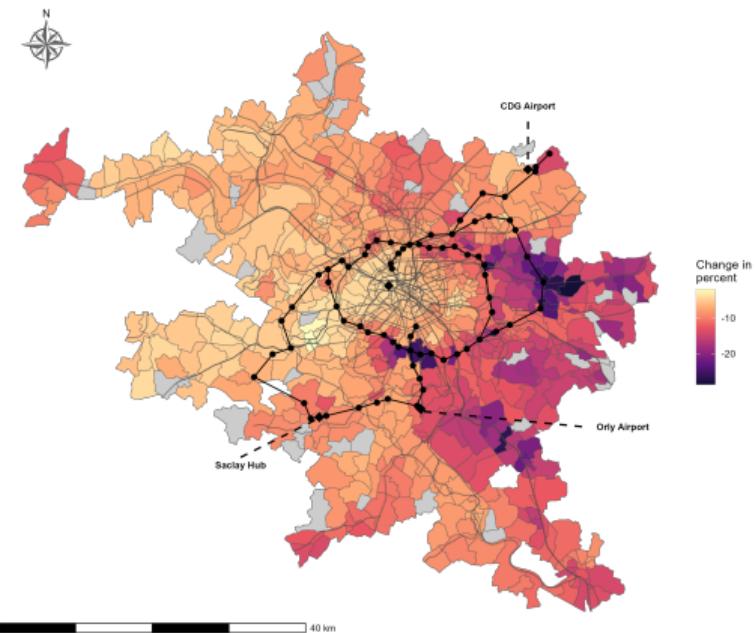
Gravity equation - results

Table 1: Estimation of $\nu_{m,g}$

	HS car (1)	LS car (2)	HS public (3)	LS public (4)
Commuting time by car	-0.1042*** (0.0006)	-0.1224*** (0.0008)		
Commuting time by PT			-0.0529*** (0.0002)	-0.0582*** (0.0003)
Origin	Yes	Yes	Yes	Yes
Destination	Yes	Yes	Yes	Yes
Observations	544,643	539,484	544,644	545,382

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Heteroscedasticity-robust standard errors in parentheses.

PM_{2.5} elasticity through commuters



Log-linearising the relationship between local air pollution and car commuters through, and taking the first-difference:

$$\ln \widehat{\Xi}_n = \psi_0 + \theta^F \Delta F_n + \ln \widehat{\psi}_n$$

<hr/> <hr/> $\ln \widehat{\Xi}_n$	
ΔF_n	0.0276***
	(0.0056)
Observations	672
R^2	0.0614

Notes: Heteroscedasticity-robust standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Grand Paris Express: Predicted changes in car usage and PM_{2.5}

Countefactual: *Grand Paris Express* - full results

	Counterfactual scenario					
	(1)	(2)	(3)	(4)	(5)	(6)
<u>Welfare $\Delta\%$</u>						
High-skilled	2.15	1.06	1.32	1.04	1.19	1.19
Low-skilled	1.07	0.67	0.69	0.48	0.6	0.59
<u>λ_{Car} $\Delta\%$</u>						
High-skilled	-9.6	-6.8	-7.7	-8.4	-8.0	-8.1
Low-skilled	-10.4	-8.6	-10.8	-11.2	-11.0	-11.0
<u>λ_{Public} $\Delta\%$</u>						
High-skilled	3.5	6.9	8.3	7.4	7.9	7.9
Low-skilled	3.2	5.4	6.1	5.4	5.8	5.8
<u>(Mean) pollution $\Delta\%$</u>						
Whole area	-0.46	-0.34	-0.38	-0.41	-0.39	-0.4
Paris municipality	-0.48	-0.32	-0.35	-0.39	-0.37	-0.35
Outside Paris municipality	-0.46	-0.35	-0.39	-0.41	-0.4	-0.4
<u>(Mean) rent $\Delta\%$</u>						
Whole area	0.18	1.27	1.86	1.51	1.77	1.62
<u>Total population $\Delta\%$</u>						
Whole	0.0	2.78	3.3	2.53	2.94	2.93
High-skilled	0.0	3.22	4.0	3.17	3.6	3.6
Low-skilled	0.0	2.03	2.09	1.45	1.8	1.77
<u>Parameters</u>						
Migration elasticity	0.0	3.0	3.0	3.0	3.0	3.0
η^L	0.0	0.0	0.07	0.07	0.07	0.07
η^R	0.0	0.0	0.1	0.1	0.1	0.1
ζ_L^R	-0.015	-0.015	-0.015	0.0	0.0	-0.015
ζ_H^R	-0.032	-0.032	-0.032	0.0	0.0	-0.032
ζ^L	-0.03	-0.03	-0.03	0.0	-0.03	0.0

Countefactual: Banning cars - full results

	Counterfactual scenario					
	(1)	(2)	(3)	(4)	(5)	(6)
<u>Welfare Δ%</u>						
High-skilled	0.87	0.45	0.65	-0.55	-0.06	0.0
Low-skilled	0.6	0.35	0.44	-0.32	0.06	0.01
<u>λ_{Car} Δ%</u>						
High-skilled	-23.1	-22.1	-23.7	-20.3	-26.0	-19.5
Low-skilled	-15.1	-14.3	-16.4	-12.7	-20.0	-10.4
<u>λ_{Public} Δ%</u>						
High-skilled	8.4	9.9	11.3	5.2	9.3	7.1
Low-skilled	4.7	5.8	6.9	2.7	6.5	3.3
<u>(Mean) pollution Δ%</u>						
Whole area	-1.25	-1.21	-1.29	-1.14	-1.41	-1.08
Paris municipality	-5.69	-5.69	-5.69	-5.69	-5.69	-5.69
Outside Paris municipality	-0.71	-0.66	-0.75	-0.59	-0.88	-0.52
<u>(Mean) rent Δ%</u>						
Whole area	0.22	0.71	0.86	-0.46	0.98	-0.22
<u>Total population Δ%</u>						
Whole	0.0	1.24	1.73	-1.39	-0.05	0.02
High-skilled	0.0	1.36	1.96	-1.65	-0.17	0.01
Low-skilled	0.0	1.05	1.33	-0.95	0.17	0.02
<u>Parameters</u>						
Migration elasticity	0.0	3.0	3.0	3.0	3.0	3.0
η^L	0.0	0.0	0.07	0.07	0.07	0.07
η^R	0.0	0.0	0.1	0.1	0.1	0.1
ζ_L^R	-0.015	-0.015	-0.015	0.0	0.0	-0.015
ζ_H^R	-0.032	-0.032	-0.032	0.0	0.0	-0.032
ζ^L	-0.03	-0.03	-0.03	0.0	-0.03	0.0